A New Numerical Method to Solve Some PDE[sub.s] in the Unit Ball and Comparison with the Finite Element and the Exact Solution
In this paper, we give a new strategy to extend a numerical approximation method for two-dimensional reaction-diffusion problems. We present numerical results for this type of equations with a known analytical solution to qualify errors for the new method. We compare the results obtained using this...
Gespeichert in:
Veröffentlicht in: | International journal of differential equations 2021-04, Vol.2021 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | International journal of differential equations |
container_volume | 2021 |
creator | Malek, Rajae Ziti, Chérif |
description | In this paper, we give a new strategy to extend a numerical approximation method for two-dimensional reaction-diffusion problems. We present numerical results for this type of equations with a known analytical solution to qualify errors for the new method. We compare the results obtained using this approach to the standard finite element approach. The proposed method is adequate even with the singular right-hand side of type Dirac. |
doi_str_mv | 10.1155/2021/6696165 |
format | Article |
fullrecord | <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracmisc_A696914959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A696914959</galeid><sourcerecordid>A696914959</sourcerecordid><originalsourceid>FETCH-LOGICAL-g679-dcfc3fee4420aa616b27f8202476d317d7797bc9502c71994ca69569a194c06a3</originalsourceid><addsrcrecordid>eNptkD1PAzEMhjOARFW68QMsMV97uY-kGUu5AlIpSJQJoSqX87VBuQQ1KWXit5MWBgZsybbsx69kE3JB0yGlZTnK0oyOGBOMsvKE9Cgb80SwIj8jA-_f0mi5yOK4R74msMA9LHYdbrWSBu4xbFwDwcGTMx8YY4fweF29-F099K-gLYQNwrPVAa6kMSBtA1PXvcut9s7CXofNkZjpiCBUBju04Ygd2tWnVOGgvQva2XNy2krjcfCb-2Q5q5bT22T-cHM3ncyTNeMiaVSr8haxKLJUynhUnfF2HI8sOGtyyhvOBa-VKNNMcSpEoSQTJROSxjJlMu-Tyx_ZtTS40rZ1YStVp71aTeIbBC1EKSI1_IeK3mCnlbPY6tj_s_ANMh1seQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A New Numerical Method to Solve Some PDE[sub.s] in the Unit Ball and Comparison with the Finite Element and the Exact Solution</title><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Open Access</source><source>Alma/SFX Local Collection</source><creator>Malek, Rajae ; Ziti, Chérif</creator><creatorcontrib>Malek, Rajae ; Ziti, Chérif</creatorcontrib><description>In this paper, we give a new strategy to extend a numerical approximation method for two-dimensional reaction-diffusion problems. We present numerical results for this type of equations with a known analytical solution to qualify errors for the new method. We compare the results obtained using this approach to the standard finite element approach. The proposed method is adequate even with the singular right-hand side of type Dirac.</description><identifier>ISSN: 1687-9643</identifier><identifier>DOI: 10.1155/2021/6696165</identifier><language>eng</language><publisher>John Wiley & Sons, Inc</publisher><ispartof>International journal of differential equations, 2021-04, Vol.2021</ispartof><rights>COPYRIGHT 2021 John Wiley & Sons, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Malek, Rajae</creatorcontrib><creatorcontrib>Ziti, Chérif</creatorcontrib><title>A New Numerical Method to Solve Some PDE[sub.s] in the Unit Ball and Comparison with the Finite Element and the Exact Solution</title><title>International journal of differential equations</title><description>In this paper, we give a new strategy to extend a numerical approximation method for two-dimensional reaction-diffusion problems. We present numerical results for this type of equations with a known analytical solution to qualify errors for the new method. We compare the results obtained using this approach to the standard finite element approach. The proposed method is adequate even with the singular right-hand side of type Dirac.</description><issn>1687-9643</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNptkD1PAzEMhjOARFW68QMsMV97uY-kGUu5AlIpSJQJoSqX87VBuQQ1KWXit5MWBgZsybbsx69kE3JB0yGlZTnK0oyOGBOMsvKE9Cgb80SwIj8jA-_f0mi5yOK4R74msMA9LHYdbrWSBu4xbFwDwcGTMx8YY4fweF29-F099K-gLYQNwrPVAa6kMSBtA1PXvcut9s7CXofNkZjpiCBUBju04Ygd2tWnVOGgvQva2XNy2krjcfCb-2Q5q5bT22T-cHM3ncyTNeMiaVSr8haxKLJUynhUnfF2HI8sOGtyyhvOBa-VKNNMcSpEoSQTJROSxjJlMu-Tyx_ZtTS40rZ1YStVp71aTeIbBC1EKSI1_IeK3mCnlbPY6tj_s_ANMh1seQ</recordid><startdate>20210412</startdate><enddate>20210412</enddate><creator>Malek, Rajae</creator><creator>Ziti, Chérif</creator><general>John Wiley & Sons, Inc</general><scope/></search><sort><creationdate>20210412</creationdate><title>A New Numerical Method to Solve Some PDE[sub.s] in the Unit Ball and Comparison with the Finite Element and the Exact Solution</title><author>Malek, Rajae ; Ziti, Chérif</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g679-dcfc3fee4420aa616b27f8202476d317d7797bc9502c71994ca69569a194c06a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malek, Rajae</creatorcontrib><creatorcontrib>Ziti, Chérif</creatorcontrib><jtitle>International journal of differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malek, Rajae</au><au>Ziti, Chérif</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Numerical Method to Solve Some PDE[sub.s] in the Unit Ball and Comparison with the Finite Element and the Exact Solution</atitle><jtitle>International journal of differential equations</jtitle><date>2021-04-12</date><risdate>2021</risdate><volume>2021</volume><issn>1687-9643</issn><abstract>In this paper, we give a new strategy to extend a numerical approximation method for two-dimensional reaction-diffusion problems. We present numerical results for this type of equations with a known analytical solution to qualify errors for the new method. We compare the results obtained using this approach to the standard finite element approach. The proposed method is adequate even with the singular right-hand side of type Dirac.</abstract><pub>John Wiley & Sons, Inc</pub><doi>10.1155/2021/6696165</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-9643 |
ispartof | International journal of differential equations, 2021-04, Vol.2021 |
issn | 1687-9643 |
language | eng |
recordid | cdi_gale_infotracmisc_A696914959 |
source | DOAJ Directory of Open Access Journals; Wiley Online Library Open Access; Alma/SFX Local Collection |
title | A New Numerical Method to Solve Some PDE[sub.s] in the Unit Ball and Comparison with the Finite Element and the Exact Solution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A31%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Numerical%20Method%20to%20Solve%20Some%20PDE%5Bsub.s%5D%20in%20the%20Unit%20Ball%20and%20Comparison%20with%20the%20Finite%20Element%20and%20the%20Exact%20Solution&rft.jtitle=International%20journal%20of%20differential%20equations&rft.au=Malek,%20Rajae&rft.date=2021-04-12&rft.volume=2021&rft.issn=1687-9643&rft_id=info:doi/10.1155/2021/6696165&rft_dat=%3Cgale%3EA696914959%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A696914959&rfr_iscdi=true |