A New Numerical Method to Solve Some PDE[sub.s] in the Unit Ball and Comparison with the Finite Element and the Exact Solution

In this paper, we give a new strategy to extend a numerical approximation method for two-dimensional reaction-diffusion problems. We present numerical results for this type of equations with a known analytical solution to qualify errors for the new method. We compare the results obtained using this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of differential equations 2021-04, Vol.2021
Hauptverfasser: Malek, Rajae, Ziti, Chérif
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title International journal of differential equations
container_volume 2021
creator Malek, Rajae
Ziti, Chérif
description In this paper, we give a new strategy to extend a numerical approximation method for two-dimensional reaction-diffusion problems. We present numerical results for this type of equations with a known analytical solution to qualify errors for the new method. We compare the results obtained using this approach to the standard finite element approach. The proposed method is adequate even with the singular right-hand side of type Dirac.
doi_str_mv 10.1155/2021/6696165
format Article
fullrecord <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracmisc_A696914959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A696914959</galeid><sourcerecordid>A696914959</sourcerecordid><originalsourceid>FETCH-LOGICAL-g679-dcfc3fee4420aa616b27f8202476d317d7797bc9502c71994ca69569a194c06a3</originalsourceid><addsrcrecordid>eNptkD1PAzEMhjOARFW68QMsMV97uY-kGUu5AlIpSJQJoSqX87VBuQQ1KWXit5MWBgZsybbsx69kE3JB0yGlZTnK0oyOGBOMsvKE9Cgb80SwIj8jA-_f0mi5yOK4R74msMA9LHYdbrWSBu4xbFwDwcGTMx8YY4fweF29-F099K-gLYQNwrPVAa6kMSBtA1PXvcut9s7CXofNkZjpiCBUBju04Ygd2tWnVOGgvQva2XNy2krjcfCb-2Q5q5bT22T-cHM3ncyTNeMiaVSr8haxKLJUynhUnfF2HI8sOGtyyhvOBa-VKNNMcSpEoSQTJROSxjJlMu-Tyx_ZtTS40rZ1YStVp71aTeIbBC1EKSI1_IeK3mCnlbPY6tj_s_ANMh1seQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A New Numerical Method to Solve Some PDE[sub.s] in the Unit Ball and Comparison with the Finite Element and the Exact Solution</title><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Open Access</source><source>Alma/SFX Local Collection</source><creator>Malek, Rajae ; Ziti, Chérif</creator><creatorcontrib>Malek, Rajae ; Ziti, Chérif</creatorcontrib><description>In this paper, we give a new strategy to extend a numerical approximation method for two-dimensional reaction-diffusion problems. We present numerical results for this type of equations with a known analytical solution to qualify errors for the new method. We compare the results obtained using this approach to the standard finite element approach. The proposed method is adequate even with the singular right-hand side of type Dirac.</description><identifier>ISSN: 1687-9643</identifier><identifier>DOI: 10.1155/2021/6696165</identifier><language>eng</language><publisher>John Wiley &amp; Sons, Inc</publisher><ispartof>International journal of differential equations, 2021-04, Vol.2021</ispartof><rights>COPYRIGHT 2021 John Wiley &amp; Sons, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Malek, Rajae</creatorcontrib><creatorcontrib>Ziti, Chérif</creatorcontrib><title>A New Numerical Method to Solve Some PDE[sub.s] in the Unit Ball and Comparison with the Finite Element and the Exact Solution</title><title>International journal of differential equations</title><description>In this paper, we give a new strategy to extend a numerical approximation method for two-dimensional reaction-diffusion problems. We present numerical results for this type of equations with a known analytical solution to qualify errors for the new method. We compare the results obtained using this approach to the standard finite element approach. The proposed method is adequate even with the singular right-hand side of type Dirac.</description><issn>1687-9643</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNptkD1PAzEMhjOARFW68QMsMV97uY-kGUu5AlIpSJQJoSqX87VBuQQ1KWXit5MWBgZsybbsx69kE3JB0yGlZTnK0oyOGBOMsvKE9Cgb80SwIj8jA-_f0mi5yOK4R74msMA9LHYdbrWSBu4xbFwDwcGTMx8YY4fweF29-F099K-gLYQNwrPVAa6kMSBtA1PXvcut9s7CXofNkZjpiCBUBju04Ygd2tWnVOGgvQva2XNy2krjcfCb-2Q5q5bT22T-cHM3ncyTNeMiaVSr8haxKLJUynhUnfF2HI8sOGtyyhvOBa-VKNNMcSpEoSQTJROSxjJlMu-Tyx_ZtTS40rZ1YStVp71aTeIbBC1EKSI1_IeK3mCnlbPY6tj_s_ANMh1seQ</recordid><startdate>20210412</startdate><enddate>20210412</enddate><creator>Malek, Rajae</creator><creator>Ziti, Chérif</creator><general>John Wiley &amp; Sons, Inc</general><scope/></search><sort><creationdate>20210412</creationdate><title>A New Numerical Method to Solve Some PDE[sub.s] in the Unit Ball and Comparison with the Finite Element and the Exact Solution</title><author>Malek, Rajae ; Ziti, Chérif</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g679-dcfc3fee4420aa616b27f8202476d317d7797bc9502c71994ca69569a194c06a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malek, Rajae</creatorcontrib><creatorcontrib>Ziti, Chérif</creatorcontrib><jtitle>International journal of differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malek, Rajae</au><au>Ziti, Chérif</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Numerical Method to Solve Some PDE[sub.s] in the Unit Ball and Comparison with the Finite Element and the Exact Solution</atitle><jtitle>International journal of differential equations</jtitle><date>2021-04-12</date><risdate>2021</risdate><volume>2021</volume><issn>1687-9643</issn><abstract>In this paper, we give a new strategy to extend a numerical approximation method for two-dimensional reaction-diffusion problems. We present numerical results for this type of equations with a known analytical solution to qualify errors for the new method. We compare the results obtained using this approach to the standard finite element approach. The proposed method is adequate even with the singular right-hand side of type Dirac.</abstract><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1155/2021/6696165</doi></addata></record>
fulltext fulltext
identifier ISSN: 1687-9643
ispartof International journal of differential equations, 2021-04, Vol.2021
issn 1687-9643
language eng
recordid cdi_gale_infotracmisc_A696914959
source DOAJ Directory of Open Access Journals; Wiley Online Library Open Access; Alma/SFX Local Collection
title A New Numerical Method to Solve Some PDE[sub.s] in the Unit Ball and Comparison with the Finite Element and the Exact Solution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A31%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Numerical%20Method%20to%20Solve%20Some%20PDE%5Bsub.s%5D%20in%20the%20Unit%20Ball%20and%20Comparison%20with%20the%20Finite%20Element%20and%20the%20Exact%20Solution&rft.jtitle=International%20journal%20of%20differential%20equations&rft.au=Malek,%20Rajae&rft.date=2021-04-12&rft.volume=2021&rft.issn=1687-9643&rft_id=info:doi/10.1155/2021/6696165&rft_dat=%3Cgale%3EA696914959%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A696914959&rfr_iscdi=true