Effects of numbers of observations and predictors for various model types on the performance of forest inventory with airborne laser scanning
Semi- and nonparametric models are popular in the area-based approach (ABA) using airborne laser scanning. It is unclear, however, how many predictors and training plots are needed to provide accurate predictions without overfitting. This work aims to explore these limits for various approaches: ord...
Gespeichert in:
Veröffentlicht in: | Canadian journal of forest research 2022-03, Vol.52 (3), p.385-395 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 395 |
---|---|
container_issue | 3 |
container_start_page | 385 |
container_title | Canadian journal of forest research |
container_volume | 52 |
creator | Cosenza, Diogo N Packalen, Petteri Maltamo, Matti Varvia, Petri Räty, Janne Soares, Paula Tomé, Margarida Strunk, Jacob L Korhonen, Lauri |
description | Semi- and nonparametric models are popular in the area-based approach (ABA) using airborne laser scanning. It is unclear, however, how many predictors and training plots are needed to provide accurate predictions without overfitting. This work aims to explore these limits for various approaches: ordinary least squares regression (OLS), generalized additive models (GAM), least absolute shrinkage and selection operator (LASSO), random forest (RF), support vector machine (SVM), and Gaussian process regression (GPR). We modeled timber volume (m
3
·ha
–1
) for four boreal sites using ABA with 2–39 predictors and 20–500 training plots. OLS, GAM, LASSO, and SVM overfitted as the number of predictors approached the number of training plots. They required ≥15 plots per predictor to provide accurate predictions (RMSE ≤30%). GAM required ≥250 plots regardless of the number of predictors. The number of predictors only mildly affected RF and GPR, but they required ≥200 and ≥250 training plots, respectively. RF did not overfit in any circumstances, whereas GPR overfit even with 500 training plots. Overall, using up to 39 predictors did not generally result in overfit, and for most model types, it resulted in better accuracy for sufficiently large datasets (≥250 plots). |
doi_str_mv | 10.1139/cjfr-2021-0192 |
format | Article |
fullrecord | <record><control><sourceid>gale_nrcre</sourceid><recordid>TN_cdi_gale_infotracmisc_A696745401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A696745401</galeid><sourcerecordid>A696745401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-fd7a12878f03a0f1efcb4fa8f638ca71c411edcff6a72ba6d414126bdaef446a3</originalsourceid><addsrcrecordid>eNqVkk-LFDEQxRtRcFy9eg568tBr0p1J9xyXZdWFRcE_51Cdrsxk6E56K5nR-RD7nTftLujAgEgOKSq_96ogryheC34uRL16b7aWyopXouRiVT0pFqLibal43TwtFpzLZbnkqnlevIhxyzmvVc0Xxd2VtWhSZMEyvxs7pN9l6CLSHpILPjLwPZsIe2dSyM82ENsDubCLbAw9DiwdJswyz9IG2YSUiRG8wdkp1xgTc36PPssP7KdLGwaOukAe2QB5EIsGvHd-_bJ4ZmGI-OrxPit-fLj6fvmpvPny8fry4qY0S75Kpe0bEFXbtJbXwK1AazppobWqbg00wkghsDfWKmiqDlQvhRSV6npAK6WC-qx4--A7Ubjd5f30NuzI55G6UrVqlWzk8g-1hgG18zYkAjO6aPSFWqmMSC4yVZ6g1uiRYAgercvtI_7NCd5M7lb_DZ2fgPLpcXTmpOu7I0FmEv5Ka9jFqK-_ff0P9vMx-7iIoRAjodUTuRHooAXXc-z0HDs9x07PscsC8SDwZPLPI5DZ_EtzD1XI2xI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2636864745</pqid></control><display><type>article</type><title>Effects of numbers of observations and predictors for various model types on the performance of forest inventory with airborne laser scanning</title><source>Alma/SFX Local Collection</source><creator>Cosenza, Diogo N ; Packalen, Petteri ; Maltamo, Matti ; Varvia, Petri ; Räty, Janne ; Soares, Paula ; Tomé, Margarida ; Strunk, Jacob L ; Korhonen, Lauri</creator><creatorcontrib>Cosenza, Diogo N ; Packalen, Petteri ; Maltamo, Matti ; Varvia, Petri ; Räty, Janne ; Soares, Paula ; Tomé, Margarida ; Strunk, Jacob L ; Korhonen, Lauri</creatorcontrib><description>Semi- and nonparametric models are popular in the area-based approach (ABA) using airborne laser scanning. It is unclear, however, how many predictors and training plots are needed to provide accurate predictions without overfitting. This work aims to explore these limits for various approaches: ordinary least squares regression (OLS), generalized additive models (GAM), least absolute shrinkage and selection operator (LASSO), random forest (RF), support vector machine (SVM), and Gaussian process regression (GPR). We modeled timber volume (m
3
·ha
–1
) for four boreal sites using ABA with 2–39 predictors and 20–500 training plots. OLS, GAM, LASSO, and SVM overfitted as the number of predictors approached the number of training plots. They required ≥15 plots per predictor to provide accurate predictions (RMSE ≤30%). GAM required ≥250 plots regardless of the number of predictors. The number of predictors only mildly affected RF and GPR, but they required ≥200 and ≥250 training plots, respectively. RF did not overfit in any circumstances, whereas GPR overfit even with 500 training plots. Overall, using up to 39 predictors did not generally result in overfit, and for most model types, it resulted in better accuracy for sufficiently large datasets (≥250 plots).</description><identifier>ISSN: 0045-5067</identifier><identifier>EISSN: 1208-6037</identifier><identifier>DOI: 10.1139/cjfr-2021-0192</identifier><language>eng</language><publisher>1840 Woodward Drive, Suite 1, Ottawa, ON K2C 0P7: Canadian Science Publishing</publisher><subject>Airborne lasers ; apprentissage machine ; approche territoriale ; area-based approach ; Forest management ; Gaussian process ; Laser applications ; Lasers ; Least squares method ; LiDAR ; Machine learning ; Regression analysis ; Remote sensing ; sampling size ; Scanning ; Support vector machines ; taille de l’échantillon ; Technology application ; Training ; télédétection</subject><ispartof>Canadian journal of forest research, 2022-03, Vol.52 (3), p.385-395</ispartof><rights>COPYRIGHT 2022 NRC Research Press</rights><rights>2021 Published by NRC Research Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-fd7a12878f03a0f1efcb4fa8f638ca71c411edcff6a72ba6d414126bdaef446a3</citedby><cites>FETCH-LOGICAL-c509t-fd7a12878f03a0f1efcb4fa8f638ca71c411edcff6a72ba6d414126bdaef446a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Cosenza, Diogo N</creatorcontrib><creatorcontrib>Packalen, Petteri</creatorcontrib><creatorcontrib>Maltamo, Matti</creatorcontrib><creatorcontrib>Varvia, Petri</creatorcontrib><creatorcontrib>Räty, Janne</creatorcontrib><creatorcontrib>Soares, Paula</creatorcontrib><creatorcontrib>Tomé, Margarida</creatorcontrib><creatorcontrib>Strunk, Jacob L</creatorcontrib><creatorcontrib>Korhonen, Lauri</creatorcontrib><title>Effects of numbers of observations and predictors for various model types on the performance of forest inventory with airborne laser scanning</title><title>Canadian journal of forest research</title><description>Semi- and nonparametric models are popular in the area-based approach (ABA) using airborne laser scanning. It is unclear, however, how many predictors and training plots are needed to provide accurate predictions without overfitting. This work aims to explore these limits for various approaches: ordinary least squares regression (OLS), generalized additive models (GAM), least absolute shrinkage and selection operator (LASSO), random forest (RF), support vector machine (SVM), and Gaussian process regression (GPR). We modeled timber volume (m
3
·ha
–1
) for four boreal sites using ABA with 2–39 predictors and 20–500 training plots. OLS, GAM, LASSO, and SVM overfitted as the number of predictors approached the number of training plots. They required ≥15 plots per predictor to provide accurate predictions (RMSE ≤30%). GAM required ≥250 plots regardless of the number of predictors. The number of predictors only mildly affected RF and GPR, but they required ≥200 and ≥250 training plots, respectively. RF did not overfit in any circumstances, whereas GPR overfit even with 500 training plots. Overall, using up to 39 predictors did not generally result in overfit, and for most model types, it resulted in better accuracy for sufficiently large datasets (≥250 plots).</description><subject>Airborne lasers</subject><subject>apprentissage machine</subject><subject>approche territoriale</subject><subject>area-based approach</subject><subject>Forest management</subject><subject>Gaussian process</subject><subject>Laser applications</subject><subject>Lasers</subject><subject>Least squares method</subject><subject>LiDAR</subject><subject>Machine learning</subject><subject>Regression analysis</subject><subject>Remote sensing</subject><subject>sampling size</subject><subject>Scanning</subject><subject>Support vector machines</subject><subject>taille de l’échantillon</subject><subject>Technology application</subject><subject>Training</subject><subject>télédétection</subject><issn>0045-5067</issn><issn>1208-6037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqVkk-LFDEQxRtRcFy9eg568tBr0p1J9xyXZdWFRcE_51Cdrsxk6E56K5nR-RD7nTftLujAgEgOKSq_96ogryheC34uRL16b7aWyopXouRiVT0pFqLibal43TwtFpzLZbnkqnlevIhxyzmvVc0Xxd2VtWhSZMEyvxs7pN9l6CLSHpILPjLwPZsIe2dSyM82ENsDubCLbAw9DiwdJswyz9IG2YSUiRG8wdkp1xgTc36PPssP7KdLGwaOukAe2QB5EIsGvHd-_bJ4ZmGI-OrxPit-fLj6fvmpvPny8fry4qY0S75Kpe0bEFXbtJbXwK1AazppobWqbg00wkghsDfWKmiqDlQvhRSV6npAK6WC-qx4--A7Ubjd5f30NuzI55G6UrVqlWzk8g-1hgG18zYkAjO6aPSFWqmMSC4yVZ6g1uiRYAgercvtI_7NCd5M7lb_DZ2fgPLpcXTmpOu7I0FmEv5Ka9jFqK-_ff0P9vMx-7iIoRAjodUTuRHooAXXc-z0HDs9x07PscsC8SDwZPLPI5DZ_EtzD1XI2xI</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Cosenza, Diogo N</creator><creator>Packalen, Petteri</creator><creator>Maltamo, Matti</creator><creator>Varvia, Petri</creator><creator>Räty, Janne</creator><creator>Soares, Paula</creator><creator>Tomé, Margarida</creator><creator>Strunk, Jacob L</creator><creator>Korhonen, Lauri</creator><general>Canadian Science Publishing</general><general>NRC Research Press</general><general>Canadian Science Publishing NRC Research Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>U9A</scope></search><sort><creationdate>20220301</creationdate><title>Effects of numbers of observations and predictors for various model types on the performance of forest inventory with airborne laser scanning</title><author>Cosenza, Diogo N ; Packalen, Petteri ; Maltamo, Matti ; Varvia, Petri ; Räty, Janne ; Soares, Paula ; Tomé, Margarida ; Strunk, Jacob L ; Korhonen, Lauri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-fd7a12878f03a0f1efcb4fa8f638ca71c411edcff6a72ba6d414126bdaef446a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Airborne lasers</topic><topic>apprentissage machine</topic><topic>approche territoriale</topic><topic>area-based approach</topic><topic>Forest management</topic><topic>Gaussian process</topic><topic>Laser applications</topic><topic>Lasers</topic><topic>Least squares method</topic><topic>LiDAR</topic><topic>Machine learning</topic><topic>Regression analysis</topic><topic>Remote sensing</topic><topic>sampling size</topic><topic>Scanning</topic><topic>Support vector machines</topic><topic>taille de l’échantillon</topic><topic>Technology application</topic><topic>Training</topic><topic>télédétection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cosenza, Diogo N</creatorcontrib><creatorcontrib>Packalen, Petteri</creatorcontrib><creatorcontrib>Maltamo, Matti</creatorcontrib><creatorcontrib>Varvia, Petri</creatorcontrib><creatorcontrib>Räty, Janne</creatorcontrib><creatorcontrib>Soares, Paula</creatorcontrib><creatorcontrib>Tomé, Margarida</creatorcontrib><creatorcontrib>Strunk, Jacob L</creatorcontrib><creatorcontrib>Korhonen, Lauri</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Canadian journal of forest research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cosenza, Diogo N</au><au>Packalen, Petteri</au><au>Maltamo, Matti</au><au>Varvia, Petri</au><au>Räty, Janne</au><au>Soares, Paula</au><au>Tomé, Margarida</au><au>Strunk, Jacob L</au><au>Korhonen, Lauri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of numbers of observations and predictors for various model types on the performance of forest inventory with airborne laser scanning</atitle><jtitle>Canadian journal of forest research</jtitle><date>2022-03-01</date><risdate>2022</risdate><volume>52</volume><issue>3</issue><spage>385</spage><epage>395</epage><pages>385-395</pages><issn>0045-5067</issn><eissn>1208-6037</eissn><abstract>Semi- and nonparametric models are popular in the area-based approach (ABA) using airborne laser scanning. It is unclear, however, how many predictors and training plots are needed to provide accurate predictions without overfitting. This work aims to explore these limits for various approaches: ordinary least squares regression (OLS), generalized additive models (GAM), least absolute shrinkage and selection operator (LASSO), random forest (RF), support vector machine (SVM), and Gaussian process regression (GPR). We modeled timber volume (m
3
·ha
–1
) for four boreal sites using ABA with 2–39 predictors and 20–500 training plots. OLS, GAM, LASSO, and SVM overfitted as the number of predictors approached the number of training plots. They required ≥15 plots per predictor to provide accurate predictions (RMSE ≤30%). GAM required ≥250 plots regardless of the number of predictors. The number of predictors only mildly affected RF and GPR, but they required ≥200 and ≥250 training plots, respectively. RF did not overfit in any circumstances, whereas GPR overfit even with 500 training plots. Overall, using up to 39 predictors did not generally result in overfit, and for most model types, it resulted in better accuracy for sufficiently large datasets (≥250 plots).</abstract><cop>1840 Woodward Drive, Suite 1, Ottawa, ON K2C 0P7</cop><pub>Canadian Science Publishing</pub><doi>10.1139/cjfr-2021-0192</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-5067 |
ispartof | Canadian journal of forest research, 2022-03, Vol.52 (3), p.385-395 |
issn | 0045-5067 1208-6037 |
language | eng |
recordid | cdi_gale_infotracmisc_A696745401 |
source | Alma/SFX Local Collection |
subjects | Airborne lasers apprentissage machine approche territoriale area-based approach Forest management Gaussian process Laser applications Lasers Least squares method LiDAR Machine learning Regression analysis Remote sensing sampling size Scanning Support vector machines taille de l’échantillon Technology application Training télédétection |
title | Effects of numbers of observations and predictors for various model types on the performance of forest inventory with airborne laser scanning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T09%3A02%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_nrcre&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20numbers%20of%20observations%20and%20predictors%20for%20various%20model%20types%20on%20the%20performance%20of%20forest%20inventory%20with%20airborne%20laser%20scanning&rft.jtitle=Canadian%20journal%20of%20forest%20research&rft.au=Cosenza,%20Diogo%20N&rft.date=2022-03-01&rft.volume=52&rft.issue=3&rft.spage=385&rft.epage=395&rft.pages=385-395&rft.issn=0045-5067&rft.eissn=1208-6037&rft_id=info:doi/10.1139/cjfr-2021-0192&rft_dat=%3Cgale_nrcre%3EA696745401%3C/gale_nrcre%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2636864745&rft_id=info:pmid/&rft_galeid=A696745401&rfr_iscdi=true |