PREDICTING PERFORMANCE CHARACTERISTICS OF DOUBLE ELLIPTICAL MICRO-STRIP PATCH ANTENNA FOR RADIOLOCATION APPLICATIONS USING RESPONSE SURFACE METHODOLOGY

Double Elliptical Micro-strip Patch Antenna (DEMPA) is a newer family of patch antennas which possesses higher design flexibility and has greater potential for getting miniaturized than Elliptical Micro-strip Patch Antenna (EMPA). The DEMPA is made out of a Double Elliptical Patch (DEP) which is des...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Progress in electromagnetics research. Research B 2020-07, Vol.88, p.35-52
Hauptverfasser: Jose, Jerry V, Rekh, Aruldas S, Jose, Manayanickal J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 52
container_issue
container_start_page 35
container_title Progress in electromagnetics research. Research B
container_volume 88
creator Jose, Jerry V
Rekh, Aruldas S
Jose, Manayanickal J
description Double Elliptical Micro-strip Patch Antenna (DEMPA) is a newer family of patch antennas which possesses higher design flexibility and has greater potential for getting miniaturized than Elliptical Micro-strip Patch Antenna (EMPA). The DEMPA is made out of a Double Elliptical Patch (DEP) which is designed as a combination of two half-elliptical patches either with a common minor axis and two different semi-major axes or with a common major axis and two different semi-minor axes. There are only two design parameters for an EMPA, its semi-major axis and semi-minor axis, whereas a DEMPA has three because of either two different semi-major axes or two different semi-minor axes. A parametric study is required to understand the relationship among these three design parameters and antenna characteristics such as return loss, impedance, resonant frequency, and gain. The present work is a statistical study, using the concept of Design of Experiments (DOE), of the impact of these design parameters on the return loss at resonant frequency within the frequency band of 8.50 GHz-10.55 GHz which has been earmarked for radiolocation applications by regulating agency. The Central Composite Design (CCD) technique in the Response Surface Methodology (RSM) of DOE has been employed here to develop empirical relationship between the design parameters and response variable. Numerical models were developed using Ansoft's HFSS as per the design matrix provided by Minitab. The concept of DOE helped to establish statistically significant parametric relationship between the design parameters and antenna return loss with the minimum amount of design effort. The predictive ability of regression model was confirmed by using numerical models of two DEMPAs that were not utilized to build the empirical relationship, one among which had been fabricated, tested and reported in literature.
doi_str_mv 10.2528/PIERB20051504
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracmisc_A687235919</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A687235919</galeid><sourcerecordid>A687235919</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2144-a758f81a210bb1564c53aab8afdfcea1f46e854e9f7b5e6beb8b0d54ca85cc203</originalsourceid><addsrcrecordid>eNptUT1PwzAQtRBIlMLIbok5YCdx4o5u6rSW0sRy0oEpclwbBfUDJSz8Ev4urspAJXTDvft496R7ADxi9BySkL5IwdU8RIhgguIrMMGzKA2SOA2v_-BbcDeO7wglEU3IBHxLxRcia0S5hJKrvFJrVmYcZiumWNZwJepGZDWscrioNvOCQ14UQvoeK-BaZKoK6kYJCSVrshVkZcPLkkF_Byq2EFVRZawRVQmZlIU44xpu6pOe4rX0FYf1RuXMi655s6oWnrN8vQc3Tu9G-_Cbp2CTc68Q-OFJOzAhjuNAp4Q6inWIUddhksSGRFp3VLutM1ZjFyeWktjOXNoRm3S2ox3akthoSowJUTQFT-e7b3pn2_7gjp-DNvt-NC1LaBpGZOZfNwXP_2z52Np9b44H63rfvyAEZ4IZjuM4WNd-DP1eD18tRu3JrPbCrOgHr9d7qw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>PREDICTING PERFORMANCE CHARACTERISTICS OF DOUBLE ELLIPTICAL MICRO-STRIP PATCH ANTENNA FOR RADIOLOCATION APPLICATIONS USING RESPONSE SURFACE METHODOLOGY</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Jose, Jerry V ; Rekh, Aruldas S ; Jose, Manayanickal J</creator><creatorcontrib>Jose, Jerry V ; Rekh, Aruldas S ; Jose, Manayanickal J</creatorcontrib><description>Double Elliptical Micro-strip Patch Antenna (DEMPA) is a newer family of patch antennas which possesses higher design flexibility and has greater potential for getting miniaturized than Elliptical Micro-strip Patch Antenna (EMPA). The DEMPA is made out of a Double Elliptical Patch (DEP) which is designed as a combination of two half-elliptical patches either with a common minor axis and two different semi-major axes or with a common major axis and two different semi-minor axes. There are only two design parameters for an EMPA, its semi-major axis and semi-minor axis, whereas a DEMPA has three because of either two different semi-major axes or two different semi-minor axes. A parametric study is required to understand the relationship among these three design parameters and antenna characteristics such as return loss, impedance, resonant frequency, and gain. The present work is a statistical study, using the concept of Design of Experiments (DOE), of the impact of these design parameters on the return loss at resonant frequency within the frequency band of 8.50 GHz-10.55 GHz which has been earmarked for radiolocation applications by regulating agency. The Central Composite Design (CCD) technique in the Response Surface Methodology (RSM) of DOE has been employed here to develop empirical relationship between the design parameters and response variable. Numerical models were developed using Ansoft's HFSS as per the design matrix provided by Minitab. The concept of DOE helped to establish statistically significant parametric relationship between the design parameters and antenna return loss with the minimum amount of design effort. The predictive ability of regression model was confirmed by using numerical models of two DEMPAs that were not utilized to build the empirical relationship, one among which had been fabricated, tested and reported in literature.</description><identifier>ISSN: 1937-6472</identifier><identifier>EISSN: 1937-6472</identifier><identifier>DOI: 10.2528/PIERB20051504</identifier><language>eng</language><publisher>Electromagnetics Academy</publisher><subject>Antennas (Electronics) ; Design and construction ; Microwave wiring</subject><ispartof>Progress in electromagnetics research. Research B, 2020-07, Vol.88, p.35-52</ispartof><rights>COPYRIGHT 2020 Electromagnetics Academy</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2144-a758f81a210bb1564c53aab8afdfcea1f46e854e9f7b5e6beb8b0d54ca85cc203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Jose, Jerry V</creatorcontrib><creatorcontrib>Rekh, Aruldas S</creatorcontrib><creatorcontrib>Jose, Manayanickal J</creatorcontrib><title>PREDICTING PERFORMANCE CHARACTERISTICS OF DOUBLE ELLIPTICAL MICRO-STRIP PATCH ANTENNA FOR RADIOLOCATION APPLICATIONS USING RESPONSE SURFACE METHODOLOGY</title><title>Progress in electromagnetics research. Research B</title><description>Double Elliptical Micro-strip Patch Antenna (DEMPA) is a newer family of patch antennas which possesses higher design flexibility and has greater potential for getting miniaturized than Elliptical Micro-strip Patch Antenna (EMPA). The DEMPA is made out of a Double Elliptical Patch (DEP) which is designed as a combination of two half-elliptical patches either with a common minor axis and two different semi-major axes or with a common major axis and two different semi-minor axes. There are only two design parameters for an EMPA, its semi-major axis and semi-minor axis, whereas a DEMPA has three because of either two different semi-major axes or two different semi-minor axes. A parametric study is required to understand the relationship among these three design parameters and antenna characteristics such as return loss, impedance, resonant frequency, and gain. The present work is a statistical study, using the concept of Design of Experiments (DOE), of the impact of these design parameters on the return loss at resonant frequency within the frequency band of 8.50 GHz-10.55 GHz which has been earmarked for radiolocation applications by regulating agency. The Central Composite Design (CCD) technique in the Response Surface Methodology (RSM) of DOE has been employed here to develop empirical relationship between the design parameters and response variable. Numerical models were developed using Ansoft's HFSS as per the design matrix provided by Minitab. The concept of DOE helped to establish statistically significant parametric relationship between the design parameters and antenna return loss with the minimum amount of design effort. The predictive ability of regression model was confirmed by using numerical models of two DEMPAs that were not utilized to build the empirical relationship, one among which had been fabricated, tested and reported in literature.</description><subject>Antennas (Electronics)</subject><subject>Design and construction</subject><subject>Microwave wiring</subject><issn>1937-6472</issn><issn>1937-6472</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNptUT1PwzAQtRBIlMLIbok5YCdx4o5u6rSW0sRy0oEpclwbBfUDJSz8Ev4urspAJXTDvft496R7ADxi9BySkL5IwdU8RIhgguIrMMGzKA2SOA2v_-BbcDeO7wglEU3IBHxLxRcia0S5hJKrvFJrVmYcZiumWNZwJepGZDWscrioNvOCQ14UQvoeK-BaZKoK6kYJCSVrshVkZcPLkkF_Byq2EFVRZawRVQmZlIU44xpu6pOe4rX0FYf1RuXMi655s6oWnrN8vQc3Tu9G-_Cbp2CTc68Q-OFJOzAhjuNAp4Q6inWIUddhksSGRFp3VLutM1ZjFyeWktjOXNoRm3S2ox3akthoSowJUTQFT-e7b3pn2_7gjp-DNvt-NC1LaBpGZOZfNwXP_2z52Np9b44H63rfvyAEZ4IZjuM4WNd-DP1eD18tRu3JrPbCrOgHr9d7qw</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Jose, Jerry V</creator><creator>Rekh, Aruldas S</creator><creator>Jose, Manayanickal J</creator><general>Electromagnetics Academy</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200701</creationdate><title>PREDICTING PERFORMANCE CHARACTERISTICS OF DOUBLE ELLIPTICAL MICRO-STRIP PATCH ANTENNA FOR RADIOLOCATION APPLICATIONS USING RESPONSE SURFACE METHODOLOGY</title><author>Jose, Jerry V ; Rekh, Aruldas S ; Jose, Manayanickal J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2144-a758f81a210bb1564c53aab8afdfcea1f46e854e9f7b5e6beb8b0d54ca85cc203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Antennas (Electronics)</topic><topic>Design and construction</topic><topic>Microwave wiring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jose, Jerry V</creatorcontrib><creatorcontrib>Rekh, Aruldas S</creatorcontrib><creatorcontrib>Jose, Manayanickal J</creatorcontrib><collection>CrossRef</collection><jtitle>Progress in electromagnetics research. Research B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jose, Jerry V</au><au>Rekh, Aruldas S</au><au>Jose, Manayanickal J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PREDICTING PERFORMANCE CHARACTERISTICS OF DOUBLE ELLIPTICAL MICRO-STRIP PATCH ANTENNA FOR RADIOLOCATION APPLICATIONS USING RESPONSE SURFACE METHODOLOGY</atitle><jtitle>Progress in electromagnetics research. Research B</jtitle><date>2020-07-01</date><risdate>2020</risdate><volume>88</volume><spage>35</spage><epage>52</epage><pages>35-52</pages><issn>1937-6472</issn><eissn>1937-6472</eissn><abstract>Double Elliptical Micro-strip Patch Antenna (DEMPA) is a newer family of patch antennas which possesses higher design flexibility and has greater potential for getting miniaturized than Elliptical Micro-strip Patch Antenna (EMPA). The DEMPA is made out of a Double Elliptical Patch (DEP) which is designed as a combination of two half-elliptical patches either with a common minor axis and two different semi-major axes or with a common major axis and two different semi-minor axes. There are only two design parameters for an EMPA, its semi-major axis and semi-minor axis, whereas a DEMPA has three because of either two different semi-major axes or two different semi-minor axes. A parametric study is required to understand the relationship among these three design parameters and antenna characteristics such as return loss, impedance, resonant frequency, and gain. The present work is a statistical study, using the concept of Design of Experiments (DOE), of the impact of these design parameters on the return loss at resonant frequency within the frequency band of 8.50 GHz-10.55 GHz which has been earmarked for radiolocation applications by regulating agency. The Central Composite Design (CCD) technique in the Response Surface Methodology (RSM) of DOE has been employed here to develop empirical relationship between the design parameters and response variable. Numerical models were developed using Ansoft's HFSS as per the design matrix provided by Minitab. The concept of DOE helped to establish statistically significant parametric relationship between the design parameters and antenna return loss with the minimum amount of design effort. The predictive ability of regression model was confirmed by using numerical models of two DEMPAs that were not utilized to build the empirical relationship, one among which had been fabricated, tested and reported in literature.</abstract><pub>Electromagnetics Academy</pub><doi>10.2528/PIERB20051504</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1937-6472
ispartof Progress in electromagnetics research. Research B, 2020-07, Vol.88, p.35-52
issn 1937-6472
1937-6472
language eng
recordid cdi_gale_infotracmisc_A687235919
source EZB-FREE-00999 freely available EZB journals
subjects Antennas (Electronics)
Design and construction
Microwave wiring
title PREDICTING PERFORMANCE CHARACTERISTICS OF DOUBLE ELLIPTICAL MICRO-STRIP PATCH ANTENNA FOR RADIOLOCATION APPLICATIONS USING RESPONSE SURFACE METHODOLOGY
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A59%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PREDICTING%20PERFORMANCE%20CHARACTERISTICS%20OF%20DOUBLE%20ELLIPTICAL%20MICRO-STRIP%20PATCH%20ANTENNA%20FOR%20RADIOLOCATION%20APPLICATIONS%20USING%20RESPONSE%20SURFACE%20METHODOLOGY&rft.jtitle=Progress%20in%20electromagnetics%20research.%20Research%20B&rft.au=Jose,%20Jerry%20V&rft.date=2020-07-01&rft.volume=88&rft.spage=35&rft.epage=52&rft.pages=35-52&rft.issn=1937-6472&rft.eissn=1937-6472&rft_id=info:doi/10.2528/PIERB20051504&rft_dat=%3Cgale_cross%3EA687235919%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A687235919&rfr_iscdi=true