SPARSE SELF-CALIBRATION FOR MICROWAVE STARING CORRELATED IMAGING WITH RANDOM PHASE ERRORS
Microwave Staring Correlated Imaging (MSCI) technology can obtain high-resolution images in staring imaging geometry by utilizing the temporal-spatial stochastic radiation field. In MSCI, sparse-driven approaches are commonly used to reconstruct the target images when the radiation fields are accura...
Gespeichert in:
Veröffentlicht in: | Progress in electromagnetics research C Pier C 2020-08, Vol.105, p.253-269 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 269 |
---|---|
container_issue | |
container_start_page | 253 |
container_title | Progress in electromagnetics research C Pier C |
container_volume | 105 |
creator | Yuan, Bo Jiang, Zheng Zhang, Jianlin Guo, Yuanyue Wang, Dongjin |
description | Microwave Staring Correlated Imaging (MSCI) technology can obtain high-resolution images in staring imaging geometry by utilizing the temporal-spatial stochastic radiation field. In MSCI, sparse-driven approaches are commonly used to reconstruct the target images when the radiation fields are accurately calculated. However, it is challenging to compute radiation filed with high precision due to the existence of random phase errors in MSCI systems. Therefore, in this paper, a self-calibration method is proposed to handle the problem. Specifically, a two-step self-calibration framework is applied which alternately reconstructs the target image and estimates the random phase errors. In the target image reconstruction step, sparse-driven approaches are utilized, while in the random phase errors calibration step, an adaptive learning rate method is adopted. Moreover, the batch-learning strategy is utilized to reduce computation burden and obtain effective convergence performance. Numerical simulations verify the advantage of the proposed method to obtain good imaging results and improve random phase errors correction performance. |
doi_str_mv | 10.2528/PIERC20070104 |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracmisc_A678654827</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A678654827</galeid><sourcerecordid>A678654827</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2584-1d77bf9260aca757378df2dc3aa653602f9f9ef801404ba10bc9cfc26c53f8523</originalsourceid><addsrcrecordid>eNptUMtKw0AUHUTBWl26D7hOnUfmkeWYTtuBtFMm0eIqTCcZifQhiRv_3pS6UJC7uJdzzwMOAPcITjDF4nGtlc0whBwimFyAEUoJjwVH4vLXfQ1u-v4dQkYEYyPwWqylLVRUqHwWZzLXT1aW2qyimbHRUmfWbOTL8C6l1at5lBlrVS5LNY30Us5P0EaXi8jK1dQso_VCDl7KWmOLW3AV3K5v7n72GDzPVJkt4tzM9ZAUe0xFEqOa821IMYPOO0454aIOuPbEOUYJgzikIW2CgCiBydYhuPWpDx4zT0kQFJMxeDj7vrldU7WHcPzsnN-3va8k44LRRGA-sCb_sIapm33rj4cmtAP-RxCfBb479n3XhOqja_eu-6oQrE51V3_qJt-yKGka</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>SPARSE SELF-CALIBRATION FOR MICROWAVE STARING CORRELATED IMAGING WITH RANDOM PHASE ERRORS</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Yuan, Bo ; Jiang, Zheng ; Zhang, Jianlin ; Guo, Yuanyue ; Wang, Dongjin</creator><creatorcontrib>Yuan, Bo ; Jiang, Zheng ; Zhang, Jianlin ; Guo, Yuanyue ; Wang, Dongjin</creatorcontrib><description>Microwave Staring Correlated Imaging (MSCI) technology can obtain high-resolution images in staring imaging geometry by utilizing the temporal-spatial stochastic radiation field. In MSCI, sparse-driven approaches are commonly used to reconstruct the target images when the radiation fields are accurately calculated. However, it is challenging to compute radiation filed with high precision due to the existence of random phase errors in MSCI systems. Therefore, in this paper, a self-calibration method is proposed to handle the problem. Specifically, a two-step self-calibration framework is applied which alternately reconstructs the target image and estimates the random phase errors. In the target image reconstruction step, sparse-driven approaches are utilized, while in the random phase errors calibration step, an adaptive learning rate method is adopted. Moreover, the batch-learning strategy is utilized to reduce computation burden and obtain effective convergence performance. Numerical simulations verify the advantage of the proposed method to obtain good imaging results and improve random phase errors correction performance.</description><identifier>ISSN: 1937-8718</identifier><identifier>EISSN: 1937-8718</identifier><identifier>DOI: 10.2528/PIERC20070104</identifier><language>eng</language><publisher>Electromagnetics Academy</publisher><subject>Engineering research ; Imaging systems ; Numerical analysis</subject><ispartof>Progress in electromagnetics research C Pier C, 2020-08, Vol.105, p.253-269</ispartof><rights>COPYRIGHT 2020 Electromagnetics Academy</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2584-1d77bf9260aca757378df2dc3aa653602f9f9ef801404ba10bc9cfc26c53f8523</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yuan, Bo</creatorcontrib><creatorcontrib>Jiang, Zheng</creatorcontrib><creatorcontrib>Zhang, Jianlin</creatorcontrib><creatorcontrib>Guo, Yuanyue</creatorcontrib><creatorcontrib>Wang, Dongjin</creatorcontrib><title>SPARSE SELF-CALIBRATION FOR MICROWAVE STARING CORRELATED IMAGING WITH RANDOM PHASE ERRORS</title><title>Progress in electromagnetics research C Pier C</title><description>Microwave Staring Correlated Imaging (MSCI) technology can obtain high-resolution images in staring imaging geometry by utilizing the temporal-spatial stochastic radiation field. In MSCI, sparse-driven approaches are commonly used to reconstruct the target images when the radiation fields are accurately calculated. However, it is challenging to compute radiation filed with high precision due to the existence of random phase errors in MSCI systems. Therefore, in this paper, a self-calibration method is proposed to handle the problem. Specifically, a two-step self-calibration framework is applied which alternately reconstructs the target image and estimates the random phase errors. In the target image reconstruction step, sparse-driven approaches are utilized, while in the random phase errors calibration step, an adaptive learning rate method is adopted. Moreover, the batch-learning strategy is utilized to reduce computation burden and obtain effective convergence performance. Numerical simulations verify the advantage of the proposed method to obtain good imaging results and improve random phase errors correction performance.</description><subject>Engineering research</subject><subject>Imaging systems</subject><subject>Numerical analysis</subject><issn>1937-8718</issn><issn>1937-8718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNptUMtKw0AUHUTBWl26D7hOnUfmkeWYTtuBtFMm0eIqTCcZifQhiRv_3pS6UJC7uJdzzwMOAPcITjDF4nGtlc0whBwimFyAEUoJjwVH4vLXfQ1u-v4dQkYEYyPwWqylLVRUqHwWZzLXT1aW2qyimbHRUmfWbOTL8C6l1at5lBlrVS5LNY30Us5P0EaXi8jK1dQso_VCDl7KWmOLW3AV3K5v7n72GDzPVJkt4tzM9ZAUe0xFEqOa821IMYPOO0454aIOuPbEOUYJgzikIW2CgCiBydYhuPWpDx4zT0kQFJMxeDj7vrldU7WHcPzsnN-3va8k44LRRGA-sCb_sIapm33rj4cmtAP-RxCfBb479n3XhOqja_eu-6oQrE51V3_qJt-yKGka</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Yuan, Bo</creator><creator>Jiang, Zheng</creator><creator>Zhang, Jianlin</creator><creator>Guo, Yuanyue</creator><creator>Wang, Dongjin</creator><general>Electromagnetics Academy</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200801</creationdate><title>SPARSE SELF-CALIBRATION FOR MICROWAVE STARING CORRELATED IMAGING WITH RANDOM PHASE ERRORS</title><author>Yuan, Bo ; Jiang, Zheng ; Zhang, Jianlin ; Guo, Yuanyue ; Wang, Dongjin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2584-1d77bf9260aca757378df2dc3aa653602f9f9ef801404ba10bc9cfc26c53f8523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Engineering research</topic><topic>Imaging systems</topic><topic>Numerical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Bo</creatorcontrib><creatorcontrib>Jiang, Zheng</creatorcontrib><creatorcontrib>Zhang, Jianlin</creatorcontrib><creatorcontrib>Guo, Yuanyue</creatorcontrib><creatorcontrib>Wang, Dongjin</creatorcontrib><collection>CrossRef</collection><jtitle>Progress in electromagnetics research C Pier C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Bo</au><au>Jiang, Zheng</au><au>Zhang, Jianlin</au><au>Guo, Yuanyue</au><au>Wang, Dongjin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SPARSE SELF-CALIBRATION FOR MICROWAVE STARING CORRELATED IMAGING WITH RANDOM PHASE ERRORS</atitle><jtitle>Progress in electromagnetics research C Pier C</jtitle><date>2020-08-01</date><risdate>2020</risdate><volume>105</volume><spage>253</spage><epage>269</epage><pages>253-269</pages><issn>1937-8718</issn><eissn>1937-8718</eissn><abstract>Microwave Staring Correlated Imaging (MSCI) technology can obtain high-resolution images in staring imaging geometry by utilizing the temporal-spatial stochastic radiation field. In MSCI, sparse-driven approaches are commonly used to reconstruct the target images when the radiation fields are accurately calculated. However, it is challenging to compute radiation filed with high precision due to the existence of random phase errors in MSCI systems. Therefore, in this paper, a self-calibration method is proposed to handle the problem. Specifically, a two-step self-calibration framework is applied which alternately reconstructs the target image and estimates the random phase errors. In the target image reconstruction step, sparse-driven approaches are utilized, while in the random phase errors calibration step, an adaptive learning rate method is adopted. Moreover, the batch-learning strategy is utilized to reduce computation burden and obtain effective convergence performance. Numerical simulations verify the advantage of the proposed method to obtain good imaging results and improve random phase errors correction performance.</abstract><pub>Electromagnetics Academy</pub><doi>10.2528/PIERC20070104</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1937-8718 |
ispartof | Progress in electromagnetics research C Pier C, 2020-08, Vol.105, p.253-269 |
issn | 1937-8718 1937-8718 |
language | eng |
recordid | cdi_gale_infotracmisc_A678654827 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Engineering research Imaging systems Numerical analysis |
title | SPARSE SELF-CALIBRATION FOR MICROWAVE STARING CORRELATED IMAGING WITH RANDOM PHASE ERRORS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A15%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SPARSE%20SELF-CALIBRATION%20FOR%20MICROWAVE%20STARING%20CORRELATED%20IMAGING%20WITH%20RANDOM%20PHASE%20ERRORS&rft.jtitle=Progress%20in%20electromagnetics%20research%20C%20Pier%20C&rft.au=Yuan,%20Bo&rft.date=2020-08-01&rft.volume=105&rft.spage=253&rft.epage=269&rft.pages=253-269&rft.issn=1937-8718&rft.eissn=1937-8718&rft_id=info:doi/10.2528/PIERC20070104&rft_dat=%3Cgale_cross%3EA678654827%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A678654827&rfr_iscdi=true |