SPARSE SELF-CALIBRATION FOR MICROWAVE STARING CORRELATED IMAGING WITH RANDOM PHASE ERRORS

Microwave Staring Correlated Imaging (MSCI) technology can obtain high-resolution images in staring imaging geometry by utilizing the temporal-spatial stochastic radiation field. In MSCI, sparse-driven approaches are commonly used to reconstruct the target images when the radiation fields are accura...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Progress in electromagnetics research C Pier C 2020-08, Vol.105, p.253-269
Hauptverfasser: Yuan, Bo, Jiang, Zheng, Zhang, Jianlin, Guo, Yuanyue, Wang, Dongjin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 269
container_issue
container_start_page 253
container_title Progress in electromagnetics research C Pier C
container_volume 105
creator Yuan, Bo
Jiang, Zheng
Zhang, Jianlin
Guo, Yuanyue
Wang, Dongjin
description Microwave Staring Correlated Imaging (MSCI) technology can obtain high-resolution images in staring imaging geometry by utilizing the temporal-spatial stochastic radiation field. In MSCI, sparse-driven approaches are commonly used to reconstruct the target images when the radiation fields are accurately calculated. However, it is challenging to compute radiation filed with high precision due to the existence of random phase errors in MSCI systems. Therefore, in this paper, a self-calibration method is proposed to handle the problem. Specifically, a two-step self-calibration framework is applied which alternately reconstructs the target image and estimates the random phase errors. In the target image reconstruction step, sparse-driven approaches are utilized, while in the random phase errors calibration step, an adaptive learning rate method is adopted. Moreover, the batch-learning strategy is utilized to reduce computation burden and obtain effective convergence performance. Numerical simulations verify the advantage of the proposed method to obtain good imaging results and improve random phase errors correction performance.
doi_str_mv 10.2528/PIERC20070104
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracmisc_A678654827</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A678654827</galeid><sourcerecordid>A678654827</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2584-1d77bf9260aca757378df2dc3aa653602f9f9ef801404ba10bc9cfc26c53f8523</originalsourceid><addsrcrecordid>eNptUMtKw0AUHUTBWl26D7hOnUfmkeWYTtuBtFMm0eIqTCcZifQhiRv_3pS6UJC7uJdzzwMOAPcITjDF4nGtlc0whBwimFyAEUoJjwVH4vLXfQ1u-v4dQkYEYyPwWqylLVRUqHwWZzLXT1aW2qyimbHRUmfWbOTL8C6l1at5lBlrVS5LNY30Us5P0EaXi8jK1dQso_VCDl7KWmOLW3AV3K5v7n72GDzPVJkt4tzM9ZAUe0xFEqOa821IMYPOO0454aIOuPbEOUYJgzikIW2CgCiBydYhuPWpDx4zT0kQFJMxeDj7vrldU7WHcPzsnN-3va8k44LRRGA-sCb_sIapm33rj4cmtAP-RxCfBb479n3XhOqja_eu-6oQrE51V3_qJt-yKGka</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>SPARSE SELF-CALIBRATION FOR MICROWAVE STARING CORRELATED IMAGING WITH RANDOM PHASE ERRORS</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Yuan, Bo ; Jiang, Zheng ; Zhang, Jianlin ; Guo, Yuanyue ; Wang, Dongjin</creator><creatorcontrib>Yuan, Bo ; Jiang, Zheng ; Zhang, Jianlin ; Guo, Yuanyue ; Wang, Dongjin</creatorcontrib><description>Microwave Staring Correlated Imaging (MSCI) technology can obtain high-resolution images in staring imaging geometry by utilizing the temporal-spatial stochastic radiation field. In MSCI, sparse-driven approaches are commonly used to reconstruct the target images when the radiation fields are accurately calculated. However, it is challenging to compute radiation filed with high precision due to the existence of random phase errors in MSCI systems. Therefore, in this paper, a self-calibration method is proposed to handle the problem. Specifically, a two-step self-calibration framework is applied which alternately reconstructs the target image and estimates the random phase errors. In the target image reconstruction step, sparse-driven approaches are utilized, while in the random phase errors calibration step, an adaptive learning rate method is adopted. Moreover, the batch-learning strategy is utilized to reduce computation burden and obtain effective convergence performance. Numerical simulations verify the advantage of the proposed method to obtain good imaging results and improve random phase errors correction performance.</description><identifier>ISSN: 1937-8718</identifier><identifier>EISSN: 1937-8718</identifier><identifier>DOI: 10.2528/PIERC20070104</identifier><language>eng</language><publisher>Electromagnetics Academy</publisher><subject>Engineering research ; Imaging systems ; Numerical analysis</subject><ispartof>Progress in electromagnetics research C Pier C, 2020-08, Vol.105, p.253-269</ispartof><rights>COPYRIGHT 2020 Electromagnetics Academy</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2584-1d77bf9260aca757378df2dc3aa653602f9f9ef801404ba10bc9cfc26c53f8523</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yuan, Bo</creatorcontrib><creatorcontrib>Jiang, Zheng</creatorcontrib><creatorcontrib>Zhang, Jianlin</creatorcontrib><creatorcontrib>Guo, Yuanyue</creatorcontrib><creatorcontrib>Wang, Dongjin</creatorcontrib><title>SPARSE SELF-CALIBRATION FOR MICROWAVE STARING CORRELATED IMAGING WITH RANDOM PHASE ERRORS</title><title>Progress in electromagnetics research C Pier C</title><description>Microwave Staring Correlated Imaging (MSCI) technology can obtain high-resolution images in staring imaging geometry by utilizing the temporal-spatial stochastic radiation field. In MSCI, sparse-driven approaches are commonly used to reconstruct the target images when the radiation fields are accurately calculated. However, it is challenging to compute radiation filed with high precision due to the existence of random phase errors in MSCI systems. Therefore, in this paper, a self-calibration method is proposed to handle the problem. Specifically, a two-step self-calibration framework is applied which alternately reconstructs the target image and estimates the random phase errors. In the target image reconstruction step, sparse-driven approaches are utilized, while in the random phase errors calibration step, an adaptive learning rate method is adopted. Moreover, the batch-learning strategy is utilized to reduce computation burden and obtain effective convergence performance. Numerical simulations verify the advantage of the proposed method to obtain good imaging results and improve random phase errors correction performance.</description><subject>Engineering research</subject><subject>Imaging systems</subject><subject>Numerical analysis</subject><issn>1937-8718</issn><issn>1937-8718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNptUMtKw0AUHUTBWl26D7hOnUfmkeWYTtuBtFMm0eIqTCcZifQhiRv_3pS6UJC7uJdzzwMOAPcITjDF4nGtlc0whBwimFyAEUoJjwVH4vLXfQ1u-v4dQkYEYyPwWqylLVRUqHwWZzLXT1aW2qyimbHRUmfWbOTL8C6l1at5lBlrVS5LNY30Us5P0EaXi8jK1dQso_VCDl7KWmOLW3AV3K5v7n72GDzPVJkt4tzM9ZAUe0xFEqOa821IMYPOO0454aIOuPbEOUYJgzikIW2CgCiBydYhuPWpDx4zT0kQFJMxeDj7vrldU7WHcPzsnN-3va8k44LRRGA-sCb_sIapm33rj4cmtAP-RxCfBb479n3XhOqja_eu-6oQrE51V3_qJt-yKGka</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Yuan, Bo</creator><creator>Jiang, Zheng</creator><creator>Zhang, Jianlin</creator><creator>Guo, Yuanyue</creator><creator>Wang, Dongjin</creator><general>Electromagnetics Academy</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200801</creationdate><title>SPARSE SELF-CALIBRATION FOR MICROWAVE STARING CORRELATED IMAGING WITH RANDOM PHASE ERRORS</title><author>Yuan, Bo ; Jiang, Zheng ; Zhang, Jianlin ; Guo, Yuanyue ; Wang, Dongjin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2584-1d77bf9260aca757378df2dc3aa653602f9f9ef801404ba10bc9cfc26c53f8523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Engineering research</topic><topic>Imaging systems</topic><topic>Numerical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Bo</creatorcontrib><creatorcontrib>Jiang, Zheng</creatorcontrib><creatorcontrib>Zhang, Jianlin</creatorcontrib><creatorcontrib>Guo, Yuanyue</creatorcontrib><creatorcontrib>Wang, Dongjin</creatorcontrib><collection>CrossRef</collection><jtitle>Progress in electromagnetics research C Pier C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Bo</au><au>Jiang, Zheng</au><au>Zhang, Jianlin</au><au>Guo, Yuanyue</au><au>Wang, Dongjin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SPARSE SELF-CALIBRATION FOR MICROWAVE STARING CORRELATED IMAGING WITH RANDOM PHASE ERRORS</atitle><jtitle>Progress in electromagnetics research C Pier C</jtitle><date>2020-08-01</date><risdate>2020</risdate><volume>105</volume><spage>253</spage><epage>269</epage><pages>253-269</pages><issn>1937-8718</issn><eissn>1937-8718</eissn><abstract>Microwave Staring Correlated Imaging (MSCI) technology can obtain high-resolution images in staring imaging geometry by utilizing the temporal-spatial stochastic radiation field. In MSCI, sparse-driven approaches are commonly used to reconstruct the target images when the radiation fields are accurately calculated. However, it is challenging to compute radiation filed with high precision due to the existence of random phase errors in MSCI systems. Therefore, in this paper, a self-calibration method is proposed to handle the problem. Specifically, a two-step self-calibration framework is applied which alternately reconstructs the target image and estimates the random phase errors. In the target image reconstruction step, sparse-driven approaches are utilized, while in the random phase errors calibration step, an adaptive learning rate method is adopted. Moreover, the batch-learning strategy is utilized to reduce computation burden and obtain effective convergence performance. Numerical simulations verify the advantage of the proposed method to obtain good imaging results and improve random phase errors correction performance.</abstract><pub>Electromagnetics Academy</pub><doi>10.2528/PIERC20070104</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1937-8718
ispartof Progress in electromagnetics research C Pier C, 2020-08, Vol.105, p.253-269
issn 1937-8718
1937-8718
language eng
recordid cdi_gale_infotracmisc_A678654827
source EZB-FREE-00999 freely available EZB journals
subjects Engineering research
Imaging systems
Numerical analysis
title SPARSE SELF-CALIBRATION FOR MICROWAVE STARING CORRELATED IMAGING WITH RANDOM PHASE ERRORS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A15%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SPARSE%20SELF-CALIBRATION%20FOR%20MICROWAVE%20STARING%20CORRELATED%20IMAGING%20WITH%20RANDOM%20PHASE%20ERRORS&rft.jtitle=Progress%20in%20electromagnetics%20research%20C%20Pier%20C&rft.au=Yuan,%20Bo&rft.date=2020-08-01&rft.volume=105&rft.spage=253&rft.epage=269&rft.pages=253-269&rft.issn=1937-8718&rft.eissn=1937-8718&rft_id=info:doi/10.2528/PIERC20070104&rft_dat=%3Cgale_cross%3EA678654827%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A678654827&rfr_iscdi=true