Locus and Optimization Problems in Lower and Higher Dimensions

In this paper we consider a locus problem that originated in a practice examination for admission to Chinese universities. We have made the problem more interesting and challenging by adding an optimization component. We also extend the locus and optimization problems to sphere and hyperspheres. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The electronic journal of mathematics & technology 2016-06, Vol.10 (2), p.69
Hauptverfasser: McAndrew, Alasdair, Yang, Wei-Chi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 69
container_title The electronic journal of mathematics & technology
container_volume 10
creator McAndrew, Alasdair
Yang, Wei-Chi
description In this paper we consider a locus problem that originated in a practice examination for admission to Chinese universities. We have made the problem more interesting and challenging by adding an optimization component. We also extend the locus and optimization problems to sphere and hyperspheres. The original problem looks simple and yet can prove challenging to many students. The solutions for locus in 2D are accessible to high school students. The solutions for maximizing the area or rectangular box using Lagrange multipliers is accessible to university students who have learned multi-variable calculus. Finally, optimization using Grobner bases can be understood by those graduate students who have grasped the concept.
format Article
fullrecord <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracmisc_A673463048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A673463048</galeid><sourcerecordid>A673463048</sourcerecordid><originalsourceid>FETCH-LOGICAL-g1738-38419e8711af07e291893f9aed937fa60d6725a3afe07088ed789eac9bd5667c3</originalsourceid><addsrcrecordid>eNqN0E1LxDAQBuAgCq6r_6HgyUMlbdp8XISl6u5CYcWPc8kmkxppE2m6KP56g3rYwh5kDvMyPDOHOUKzTBCS5jwnx3v5FJ2F8IZxSTkvZuim9moXEul0snkfbW-_5Gi9Sx4Gv-2gD4l1Se0_YPghK9u-xnhre3AhsnCOTozsAlz89Tl6ub97rlZpvVmuq0WdthkjPCW8yARwlmXSYAa5yLggRkjQgjAjKdaU5aUk0gBmmHPQjAuQSmx1SSlTZI4uf--2soPGOuPHQareBtUsKCMFJbjgUV0fULE09FZ5B8bG-WTharIQzQifYyt3ITTrp8d_W76spzY9ZJXvOmihia-pNvv-G-HRfr8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Locus and Optimization Problems in Lower and Higher Dimensions</title><source>Alma/SFX Local Collection</source><creator>McAndrew, Alasdair ; Yang, Wei-Chi</creator><creatorcontrib>McAndrew, Alasdair ; Yang, Wei-Chi</creatorcontrib><description>In this paper we consider a locus problem that originated in a practice examination for admission to Chinese universities. We have made the problem more interesting and challenging by adding an optimization component. We also extend the locus and optimization problems to sphere and hyperspheres. The original problem looks simple and yet can prove challenging to many students. The solutions for locus in 2D are accessible to high school students. The solutions for maximizing the area or rectangular box using Lagrange multipliers is accessible to university students who have learned multi-variable calculus. Finally, optimization using Grobner bases can be understood by those graduate students who have grasped the concept.</description><identifier>ISSN: 1933-2823</identifier><identifier>EISSN: 1933-2823</identifier><language>eng</language><publisher>Mathematics and Technology, LLC</publisher><subject>Dimension theory (Topology) ; Locus (Geometry) ; Mathematical optimization ; Mathematical research ; Optimization theory</subject><ispartof>The electronic journal of mathematics &amp; technology, 2016-06, Vol.10 (2), p.69</ispartof><rights>COPYRIGHT 2016 Mathematics and Technology, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>McAndrew, Alasdair</creatorcontrib><creatorcontrib>Yang, Wei-Chi</creatorcontrib><title>Locus and Optimization Problems in Lower and Higher Dimensions</title><title>The electronic journal of mathematics &amp; technology</title><addtitle>Electronic Journal of Mathematics and Technology</addtitle><description>In this paper we consider a locus problem that originated in a practice examination for admission to Chinese universities. We have made the problem more interesting and challenging by adding an optimization component. We also extend the locus and optimization problems to sphere and hyperspheres. The original problem looks simple and yet can prove challenging to many students. The solutions for locus in 2D are accessible to high school students. The solutions for maximizing the area or rectangular box using Lagrange multipliers is accessible to university students who have learned multi-variable calculus. Finally, optimization using Grobner bases can be understood by those graduate students who have grasped the concept.</description><subject>Dimension theory (Topology)</subject><subject>Locus (Geometry)</subject><subject>Mathematical optimization</subject><subject>Mathematical research</subject><subject>Optimization theory</subject><issn>1933-2823</issn><issn>1933-2823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqN0E1LxDAQBuAgCq6r_6HgyUMlbdp8XISl6u5CYcWPc8kmkxppE2m6KP56g3rYwh5kDvMyPDOHOUKzTBCS5jwnx3v5FJ2F8IZxSTkvZuim9moXEul0snkfbW-_5Gi9Sx4Gv-2gD4l1Se0_YPghK9u-xnhre3AhsnCOTozsAlz89Tl6ub97rlZpvVmuq0WdthkjPCW8yARwlmXSYAa5yLggRkjQgjAjKdaU5aUk0gBmmHPQjAuQSmx1SSlTZI4uf--2soPGOuPHQareBtUsKCMFJbjgUV0fULE09FZ5B8bG-WTharIQzQifYyt3ITTrp8d_W76spzY9ZJXvOmihia-pNvv-G-HRfr8</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>McAndrew, Alasdair</creator><creator>Yang, Wei-Chi</creator><general>Mathematics and Technology, LLC</general><scope>8GL</scope><scope>ISR</scope></search><sort><creationdate>20160601</creationdate><title>Locus and Optimization Problems in Lower and Higher Dimensions</title><author>McAndrew, Alasdair ; Yang, Wei-Chi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g1738-38419e8711af07e291893f9aed937fa60d6725a3afe07088ed789eac9bd5667c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Dimension theory (Topology)</topic><topic>Locus (Geometry)</topic><topic>Mathematical optimization</topic><topic>Mathematical research</topic><topic>Optimization theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McAndrew, Alasdair</creatorcontrib><creatorcontrib>Yang, Wei-Chi</creatorcontrib><collection>Gale In Context: High School</collection><collection>Science In Context</collection><jtitle>The electronic journal of mathematics &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McAndrew, Alasdair</au><au>Yang, Wei-Chi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Locus and Optimization Problems in Lower and Higher Dimensions</atitle><jtitle>The electronic journal of mathematics &amp; technology</jtitle><addtitle>Electronic Journal of Mathematics and Technology</addtitle><date>2016-06-01</date><risdate>2016</risdate><volume>10</volume><issue>2</issue><spage>69</spage><pages>69-</pages><issn>1933-2823</issn><eissn>1933-2823</eissn><abstract>In this paper we consider a locus problem that originated in a practice examination for admission to Chinese universities. We have made the problem more interesting and challenging by adding an optimization component. We also extend the locus and optimization problems to sphere and hyperspheres. The original problem looks simple and yet can prove challenging to many students. The solutions for locus in 2D are accessible to high school students. The solutions for maximizing the area or rectangular box using Lagrange multipliers is accessible to university students who have learned multi-variable calculus. Finally, optimization using Grobner bases can be understood by those graduate students who have grasped the concept.</abstract><pub>Mathematics and Technology, LLC</pub><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1933-2823
ispartof The electronic journal of mathematics & technology, 2016-06, Vol.10 (2), p.69
issn 1933-2823
1933-2823
language eng
recordid cdi_gale_infotracmisc_A673463048
source Alma/SFX Local Collection
subjects Dimension theory (Topology)
Locus (Geometry)
Mathematical optimization
Mathematical research
Optimization theory
title Locus and Optimization Problems in Lower and Higher Dimensions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T18%3A48%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Locus%20and%20Optimization%20Problems%20in%20Lower%20and%20Higher%20Dimensions&rft.jtitle=The%20electronic%20journal%20of%20mathematics%20&%20technology&rft.au=McAndrew,%20Alasdair&rft.date=2016-06-01&rft.volume=10&rft.issue=2&rft.spage=69&rft.pages=69-&rft.issn=1933-2823&rft.eissn=1933-2823&rft_id=info:doi/&rft_dat=%3Cgale%3EA673463048%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A673463048&rfr_iscdi=true