Locus and Optimization Problems in Lower and Higher Dimensions
In this paper we consider a locus problem that originated in a practice examination for admission to Chinese universities. We have made the problem more interesting and challenging by adding an optimization component. We also extend the locus and optimization problems to sphere and hyperspheres. The...
Gespeichert in:
Veröffentlicht in: | The electronic journal of mathematics & technology 2016-06, Vol.10 (2), p.69 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 69 |
container_title | The electronic journal of mathematics & technology |
container_volume | 10 |
creator | McAndrew, Alasdair Yang, Wei-Chi |
description | In this paper we consider a locus problem that originated in a practice examination for admission to Chinese universities. We have made the problem more interesting and challenging by adding an optimization component. We also extend the locus and optimization problems to sphere and hyperspheres. The original problem looks simple and yet can prove challenging to many students. The solutions for locus in 2D are accessible to high school students. The solutions for maximizing the area or rectangular box using Lagrange multipliers is accessible to university students who have learned multi-variable calculus. Finally, optimization using Grobner bases can be understood by those graduate students who have grasped the concept. |
format | Article |
fullrecord | <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracmisc_A673463048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A673463048</galeid><sourcerecordid>A673463048</sourcerecordid><originalsourceid>FETCH-LOGICAL-g1738-38419e8711af07e291893f9aed937fa60d6725a3afe07088ed789eac9bd5667c3</originalsourceid><addsrcrecordid>eNqN0E1LxDAQBuAgCq6r_6HgyUMlbdp8XISl6u5CYcWPc8kmkxppE2m6KP56g3rYwh5kDvMyPDOHOUKzTBCS5jwnx3v5FJ2F8IZxSTkvZuim9moXEul0snkfbW-_5Gi9Sx4Gv-2gD4l1Se0_YPghK9u-xnhre3AhsnCOTozsAlz89Tl6ub97rlZpvVmuq0WdthkjPCW8yARwlmXSYAa5yLggRkjQgjAjKdaU5aUk0gBmmHPQjAuQSmx1SSlTZI4uf--2soPGOuPHQareBtUsKCMFJbjgUV0fULE09FZ5B8bG-WTharIQzQifYyt3ITTrp8d_W76spzY9ZJXvOmihia-pNvv-G-HRfr8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Locus and Optimization Problems in Lower and Higher Dimensions</title><source>Alma/SFX Local Collection</source><creator>McAndrew, Alasdair ; Yang, Wei-Chi</creator><creatorcontrib>McAndrew, Alasdair ; Yang, Wei-Chi</creatorcontrib><description>In this paper we consider a locus problem that originated in a practice examination for admission to Chinese universities. We have made the problem more interesting and challenging by adding an optimization component. We also extend the locus and optimization problems to sphere and hyperspheres. The original problem looks simple and yet can prove challenging to many students. The solutions for locus in 2D are accessible to high school students. The solutions for maximizing the area or rectangular box using Lagrange multipliers is accessible to university students who have learned multi-variable calculus. Finally, optimization using Grobner bases can be understood by those graduate students who have grasped the concept.</description><identifier>ISSN: 1933-2823</identifier><identifier>EISSN: 1933-2823</identifier><language>eng</language><publisher>Mathematics and Technology, LLC</publisher><subject>Dimension theory (Topology) ; Locus (Geometry) ; Mathematical optimization ; Mathematical research ; Optimization theory</subject><ispartof>The electronic journal of mathematics & technology, 2016-06, Vol.10 (2), p.69</ispartof><rights>COPYRIGHT 2016 Mathematics and Technology, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>McAndrew, Alasdair</creatorcontrib><creatorcontrib>Yang, Wei-Chi</creatorcontrib><title>Locus and Optimization Problems in Lower and Higher Dimensions</title><title>The electronic journal of mathematics & technology</title><addtitle>Electronic Journal of Mathematics and Technology</addtitle><description>In this paper we consider a locus problem that originated in a practice examination for admission to Chinese universities. We have made the problem more interesting and challenging by adding an optimization component. We also extend the locus and optimization problems to sphere and hyperspheres. The original problem looks simple and yet can prove challenging to many students. The solutions for locus in 2D are accessible to high school students. The solutions for maximizing the area or rectangular box using Lagrange multipliers is accessible to university students who have learned multi-variable calculus. Finally, optimization using Grobner bases can be understood by those graduate students who have grasped the concept.</description><subject>Dimension theory (Topology)</subject><subject>Locus (Geometry)</subject><subject>Mathematical optimization</subject><subject>Mathematical research</subject><subject>Optimization theory</subject><issn>1933-2823</issn><issn>1933-2823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqN0E1LxDAQBuAgCq6r_6HgyUMlbdp8XISl6u5CYcWPc8kmkxppE2m6KP56g3rYwh5kDvMyPDOHOUKzTBCS5jwnx3v5FJ2F8IZxSTkvZuim9moXEul0snkfbW-_5Gi9Sx4Gv-2gD4l1Se0_YPghK9u-xnhre3AhsnCOTozsAlz89Tl6ub97rlZpvVmuq0WdthkjPCW8yARwlmXSYAa5yLggRkjQgjAjKdaU5aUk0gBmmHPQjAuQSmx1SSlTZI4uf--2soPGOuPHQareBtUsKCMFJbjgUV0fULE09FZ5B8bG-WTharIQzQifYyt3ITTrp8d_W76spzY9ZJXvOmihia-pNvv-G-HRfr8</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>McAndrew, Alasdair</creator><creator>Yang, Wei-Chi</creator><general>Mathematics and Technology, LLC</general><scope>8GL</scope><scope>ISR</scope></search><sort><creationdate>20160601</creationdate><title>Locus and Optimization Problems in Lower and Higher Dimensions</title><author>McAndrew, Alasdair ; Yang, Wei-Chi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g1738-38419e8711af07e291893f9aed937fa60d6725a3afe07088ed789eac9bd5667c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Dimension theory (Topology)</topic><topic>Locus (Geometry)</topic><topic>Mathematical optimization</topic><topic>Mathematical research</topic><topic>Optimization theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McAndrew, Alasdair</creatorcontrib><creatorcontrib>Yang, Wei-Chi</creatorcontrib><collection>Gale In Context: High School</collection><collection>Science In Context</collection><jtitle>The electronic journal of mathematics & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McAndrew, Alasdair</au><au>Yang, Wei-Chi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Locus and Optimization Problems in Lower and Higher Dimensions</atitle><jtitle>The electronic journal of mathematics & technology</jtitle><addtitle>Electronic Journal of Mathematics and Technology</addtitle><date>2016-06-01</date><risdate>2016</risdate><volume>10</volume><issue>2</issue><spage>69</spage><pages>69-</pages><issn>1933-2823</issn><eissn>1933-2823</eissn><abstract>In this paper we consider a locus problem that originated in a practice examination for admission to Chinese universities. We have made the problem more interesting and challenging by adding an optimization component. We also extend the locus and optimization problems to sphere and hyperspheres. The original problem looks simple and yet can prove challenging to many students. The solutions for locus in 2D are accessible to high school students. The solutions for maximizing the area or rectangular box using Lagrange multipliers is accessible to university students who have learned multi-variable calculus. Finally, optimization using Grobner bases can be understood by those graduate students who have grasped the concept.</abstract><pub>Mathematics and Technology, LLC</pub><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1933-2823 |
ispartof | The electronic journal of mathematics & technology, 2016-06, Vol.10 (2), p.69 |
issn | 1933-2823 1933-2823 |
language | eng |
recordid | cdi_gale_infotracmisc_A673463048 |
source | Alma/SFX Local Collection |
subjects | Dimension theory (Topology) Locus (Geometry) Mathematical optimization Mathematical research Optimization theory |
title | Locus and Optimization Problems in Lower and Higher Dimensions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T18%3A48%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Locus%20and%20Optimization%20Problems%20in%20Lower%20and%20Higher%20Dimensions&rft.jtitle=The%20electronic%20journal%20of%20mathematics%20&%20technology&rft.au=McAndrew,%20Alasdair&rft.date=2016-06-01&rft.volume=10&rft.issue=2&rft.spage=69&rft.pages=69-&rft.issn=1933-2823&rft.eissn=1933-2823&rft_id=info:doi/&rft_dat=%3Cgale%3EA673463048%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A673463048&rfr_iscdi=true |