Semi-orthogonal decomposition of symmetric products of curves and canonical system

Let C be an irreducible smooth complex projective curve of genus g\geq 2 and let C_d be its d -fold symmetric product. In this paper, we study the question of semi-orthogonal decompositions of the derived category of C_d . This entails investigations of the canonical system on C_d , in particular it...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista matemática iberoamericana 2021-07, Vol.37 (5), p.1885-1896
Hauptverfasser: Biswas, Indranil, Gomez, Tomas L, Lee, Kyoung-Seog
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1896
container_issue 5
container_start_page 1885
container_title Revista matemática iberoamericana
container_volume 37
creator Biswas, Indranil
Gomez, Tomas L
Lee, Kyoung-Seog
description Let C be an irreducible smooth complex projective curve of genus g\geq 2 and let C_d be its d -fold symmetric product. In this paper, we study the question of semi-orthogonal decompositions of the derived category of C_d . This entails investigations of the canonical system on C_d , in particular its base locus.
doi_str_mv 10.4171/RMI/1251
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracmisc_A667557769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A667557769</galeid><sourcerecordid>A667557769</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-dfedab91a450152f742fbc7cf0d3ceee077cea5943895e7bc7c498ef666d93b73</originalsourceid><addsrcrecordid>eNptkM1LAzEQxYMoWKvgn7Dgxcu2-dgk3WMpfhQqQtXzkk4mNdJsSrIV-t-7S70IMoeBN-838B4ht4xOKqbZdP2ynDIu2RkZcS5kSRVT52REORNlL9BLcpXzF6W8opSOyPoNgy9j6j7jNrZmV1iEGPYx-87HtoiuyMcQsEsein2K9gBdHlQ4pG_MhWltAaaNrYeezcfcYbgmF87sMt787jH5eHx4XzyXq9en5WK-KkHwWVdah9ZsamYqSZnkTlfcbUCDo1YAIlKtAY2sKzGrJerhVNUzdEopW4uNFmNyd_q7NTtsfOtilwwEn6GZK6Wl1FrVvWvyj6sf2weH2KLzvf4HuD8BkGLOCV2zTz6YdGwYbYaKmxR8M1QsfgCGrm9u</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Semi-orthogonal decomposition of symmetric products of curves and canonical system</title><source>European Mathematical Society Publishing House</source><creator>Biswas, Indranil ; Gomez, Tomas L ; Lee, Kyoung-Seog</creator><creatorcontrib>Biswas, Indranil ; Gomez, Tomas L ; Lee, Kyoung-Seog</creatorcontrib><description>Let C be an irreducible smooth complex projective curve of genus g\geq 2 and let C_d be its d -fold symmetric product. In this paper, we study the question of semi-orthogonal decompositions of the derived category of C_d . This entails investigations of the canonical system on C_d , in particular its base locus.</description><identifier>ISSN: 0213-2230</identifier><identifier>EISSN: 2235-0616</identifier><identifier>DOI: 10.4171/RMI/1251</identifier><language>eng</language><publisher>European Mathematical Society Publishing House</publisher><ispartof>Revista matemática iberoamericana, 2021-07, Vol.37 (5), p.1885-1896</ispartof><rights>COPYRIGHT 2021 European Mathematical Society Publishing House</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-dfedab91a450152f742fbc7cf0d3ceee077cea5943895e7bc7c498ef666d93b73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Biswas, Indranil</creatorcontrib><creatorcontrib>Gomez, Tomas L</creatorcontrib><creatorcontrib>Lee, Kyoung-Seog</creatorcontrib><title>Semi-orthogonal decomposition of symmetric products of curves and canonical system</title><title>Revista matemática iberoamericana</title><description>Let C be an irreducible smooth complex projective curve of genus g\geq 2 and let C_d be its d -fold symmetric product. In this paper, we study the question of semi-orthogonal decompositions of the derived category of C_d . This entails investigations of the canonical system on C_d , in particular its base locus.</description><issn>0213-2230</issn><issn>2235-0616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNptkM1LAzEQxYMoWKvgn7Dgxcu2-dgk3WMpfhQqQtXzkk4mNdJsSrIV-t-7S70IMoeBN-838B4ht4xOKqbZdP2ynDIu2RkZcS5kSRVT52REORNlL9BLcpXzF6W8opSOyPoNgy9j6j7jNrZmV1iEGPYx-87HtoiuyMcQsEsein2K9gBdHlQ4pG_MhWltAaaNrYeezcfcYbgmF87sMt787jH5eHx4XzyXq9en5WK-KkHwWVdah9ZsamYqSZnkTlfcbUCDo1YAIlKtAY2sKzGrJerhVNUzdEopW4uNFmNyd_q7NTtsfOtilwwEn6GZK6Wl1FrVvWvyj6sf2weH2KLzvf4HuD8BkGLOCV2zTz6YdGwYbYaKmxR8M1QsfgCGrm9u</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Biswas, Indranil</creator><creator>Gomez, Tomas L</creator><creator>Lee, Kyoung-Seog</creator><general>European Mathematical Society Publishing House</general><scope>AAYXX</scope><scope>CITATION</scope><scope>INF</scope></search><sort><creationdate>20210701</creationdate><title>Semi-orthogonal decomposition of symmetric products of curves and canonical system</title><author>Biswas, Indranil ; Gomez, Tomas L ; Lee, Kyoung-Seog</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-dfedab91a450152f742fbc7cf0d3ceee077cea5943895e7bc7c498ef666d93b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biswas, Indranil</creatorcontrib><creatorcontrib>Gomez, Tomas L</creatorcontrib><creatorcontrib>Lee, Kyoung-Seog</creatorcontrib><collection>CrossRef</collection><collection>Gale OneFile: Informe Academico</collection><jtitle>Revista matemática iberoamericana</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biswas, Indranil</au><au>Gomez, Tomas L</au><au>Lee, Kyoung-Seog</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semi-orthogonal decomposition of symmetric products of curves and canonical system</atitle><jtitle>Revista matemática iberoamericana</jtitle><date>2021-07-01</date><risdate>2021</risdate><volume>37</volume><issue>5</issue><spage>1885</spage><epage>1896</epage><pages>1885-1896</pages><issn>0213-2230</issn><eissn>2235-0616</eissn><abstract>Let C be an irreducible smooth complex projective curve of genus g\geq 2 and let C_d be its d -fold symmetric product. In this paper, we study the question of semi-orthogonal decompositions of the derived category of C_d . This entails investigations of the canonical system on C_d , in particular its base locus.</abstract><pub>European Mathematical Society Publishing House</pub><doi>10.4171/RMI/1251</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0213-2230
ispartof Revista matemática iberoamericana, 2021-07, Vol.37 (5), p.1885-1896
issn 0213-2230
2235-0616
language eng
recordid cdi_gale_infotracmisc_A667557769
source European Mathematical Society Publishing House
title Semi-orthogonal decomposition of symmetric products of curves and canonical system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A04%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semi-orthogonal%20decomposition%20of%20symmetric%20products%20of%20curves%20and%20canonical%20system&rft.jtitle=Revista%20matem%C3%A1tica%20iberoamericana&rft.au=Biswas,%20Indranil&rft.date=2021-07-01&rft.volume=37&rft.issue=5&rft.spage=1885&rft.epage=1896&rft.pages=1885-1896&rft.issn=0213-2230&rft.eissn=2235-0616&rft_id=info:doi/10.4171/RMI/1251&rft_dat=%3Cgale_cross%3EA667557769%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A667557769&rfr_iscdi=true