A sharp necessary condition for rectifiable curves in metric spaces

In his 1990 Inventiones paper, P. Jones characterized subsets of rectifiable curves in the plane, using a multiscale sum of what is now known as Jones \beta -numbers, numbers measuring flatness in a given scale and location. This work was generalized to \mathbb R^n by Okikiolu, to Hilbert space by t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista matemática iberoamericana 2021-05, Vol.37 (3), p.1007-1044
Hauptverfasser: David, Guy C, Schul, Raanan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1044
container_issue 3
container_start_page 1007
container_title Revista matemática iberoamericana
container_volume 37
creator David, Guy C
Schul, Raanan
description In his 1990 Inventiones paper, P. Jones characterized subsets of rectifiable curves in the plane, using a multiscale sum of what is now known as Jones \beta -numbers, numbers measuring flatness in a given scale and location. This work was generalized to \mathbb R^n by Okikiolu, to Hilbert space by the second author, and has many variants in a variety of metric settings. Notably, in 2005, Hahlomaa gave a sufficient condition for a subset of a metric space to be contained in a rectifiable curve. We prove the sharpest possible converse to Hahlomaa’s theorem for doubling curves, and then deduce some corollaries for subsets of metric and Banach spaces, as well as the Heisenberg group.
doi_str_mv 10.4171/RMI/1216
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracmisc_A658341783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A658341783</galeid><sourcerecordid>A658341783</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-933bdae382e88b6a7994b667ae66f2c966039a0bb32fd33779f0a2aa4eedea863</originalsourceid><addsrcrecordid>eNptkEFLAzEQhYMoWKvgTwh48bLtJNlmN8dStBYqgug5zGYnGunulmQV_Pem1Isgc3jweN_Ae4xdC5iVohLz58fNXEihT9hESrUoQAt9yiYghSqyAefsIqUPAFkCwIStljy9Y9zznhylhPGbu6FvwxiGnvsh8khuDD5gsyPuPuMXJR563tEYg-Npj5m6ZGced4mufnXKXu_vXlYPxfZpvVktt4WTphwLo1TTIqlaUl03GitjykbrCklrL53RGpRBaBolfatUVRkPKBFLopaw1mrKbo5_33BHNvR-GCO6LiRnl3pRq9y_Vjk1-yeVr6Uu5G7kQ_b_ALdHwMUhpUje7mPo8hJWgD1samMX7GFT9QO0QWhO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A sharp necessary condition for rectifiable curves in metric spaces</title><source>European Mathematical Society Publishing House</source><creator>David, Guy C ; Schul, Raanan</creator><creatorcontrib>David, Guy C ; Schul, Raanan</creatorcontrib><description>In his 1990 Inventiones paper, P. Jones characterized subsets of rectifiable curves in the plane, using a multiscale sum of what is now known as Jones \beta -numbers, numbers measuring flatness in a given scale and location. This work was generalized to \mathbb R^n by Okikiolu, to Hilbert space by the second author, and has many variants in a variety of metric settings. Notably, in 2005, Hahlomaa gave a sufficient condition for a subset of a metric space to be contained in a rectifiable curve. We prove the sharpest possible converse to Hahlomaa’s theorem for doubling curves, and then deduce some corollaries for subsets of metric and Banach spaces, as well as the Heisenberg group.</description><identifier>ISSN: 0213-2230</identifier><identifier>EISSN: 2235-0616</identifier><identifier>DOI: 10.4171/RMI/1216</identifier><language>eng</language><publisher>European Mathematical Society Publishing House</publisher><ispartof>Revista matemática iberoamericana, 2021-05, Vol.37 (3), p.1007-1044</ispartof><rights>COPYRIGHT 2021 European Mathematical Society Publishing House</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-933bdae382e88b6a7994b667ae66f2c966039a0bb32fd33779f0a2aa4eedea863</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27926,27927</link.rule.ids></links><search><creatorcontrib>David, Guy C</creatorcontrib><creatorcontrib>Schul, Raanan</creatorcontrib><title>A sharp necessary condition for rectifiable curves in metric spaces</title><title>Revista matemática iberoamericana</title><description>In his 1990 Inventiones paper, P. Jones characterized subsets of rectifiable curves in the plane, using a multiscale sum of what is now known as Jones \beta -numbers, numbers measuring flatness in a given scale and location. This work was generalized to \mathbb R^n by Okikiolu, to Hilbert space by the second author, and has many variants in a variety of metric settings. Notably, in 2005, Hahlomaa gave a sufficient condition for a subset of a metric space to be contained in a rectifiable curve. We prove the sharpest possible converse to Hahlomaa’s theorem for doubling curves, and then deduce some corollaries for subsets of metric and Banach spaces, as well as the Heisenberg group.</description><issn>0213-2230</issn><issn>2235-0616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNptkEFLAzEQhYMoWKvgTwh48bLtJNlmN8dStBYqgug5zGYnGunulmQV_Pem1Isgc3jweN_Ae4xdC5iVohLz58fNXEihT9hESrUoQAt9yiYghSqyAefsIqUPAFkCwIStljy9Y9zznhylhPGbu6FvwxiGnvsh8khuDD5gsyPuPuMXJR563tEYg-Npj5m6ZGced4mufnXKXu_vXlYPxfZpvVktt4WTphwLo1TTIqlaUl03GitjykbrCklrL53RGpRBaBolfatUVRkPKBFLopaw1mrKbo5_33BHNvR-GCO6LiRnl3pRq9y_Vjk1-yeVr6Uu5G7kQ_b_ALdHwMUhpUje7mPo8hJWgD1samMX7GFT9QO0QWhO</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>David, Guy C</creator><creator>Schul, Raanan</creator><general>European Mathematical Society Publishing House</general><scope>AAYXX</scope><scope>CITATION</scope><scope>INF</scope></search><sort><creationdate>20210501</creationdate><title>A sharp necessary condition for rectifiable curves in metric spaces</title><author>David, Guy C ; Schul, Raanan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-933bdae382e88b6a7994b667ae66f2c966039a0bb32fd33779f0a2aa4eedea863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>David, Guy C</creatorcontrib><creatorcontrib>Schul, Raanan</creatorcontrib><collection>CrossRef</collection><collection>Gale OneFile: Informe Academico</collection><jtitle>Revista matemática iberoamericana</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>David, Guy C</au><au>Schul, Raanan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A sharp necessary condition for rectifiable curves in metric spaces</atitle><jtitle>Revista matemática iberoamericana</jtitle><date>2021-05-01</date><risdate>2021</risdate><volume>37</volume><issue>3</issue><spage>1007</spage><epage>1044</epage><pages>1007-1044</pages><issn>0213-2230</issn><eissn>2235-0616</eissn><abstract>In his 1990 Inventiones paper, P. Jones characterized subsets of rectifiable curves in the plane, using a multiscale sum of what is now known as Jones \beta -numbers, numbers measuring flatness in a given scale and location. This work was generalized to \mathbb R^n by Okikiolu, to Hilbert space by the second author, and has many variants in a variety of metric settings. Notably, in 2005, Hahlomaa gave a sufficient condition for a subset of a metric space to be contained in a rectifiable curve. We prove the sharpest possible converse to Hahlomaa’s theorem for doubling curves, and then deduce some corollaries for subsets of metric and Banach spaces, as well as the Heisenberg group.</abstract><pub>European Mathematical Society Publishing House</pub><doi>10.4171/RMI/1216</doi><tpages>38</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0213-2230
ispartof Revista matemática iberoamericana, 2021-05, Vol.37 (3), p.1007-1044
issn 0213-2230
2235-0616
language eng
recordid cdi_gale_infotracmisc_A658341783
source European Mathematical Society Publishing House
title A sharp necessary condition for rectifiable curves in metric spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T00%3A41%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20sharp%20necessary%20condition%20for%20rectifiable%20curves%20in%20metric%20spaces&rft.jtitle=Revista%20matem%C3%A1tica%20iberoamericana&rft.au=David,%20Guy%20C&rft.date=2021-05-01&rft.volume=37&rft.issue=3&rft.spage=1007&rft.epage=1044&rft.pages=1007-1044&rft.issn=0213-2230&rft.eissn=2235-0616&rft_id=info:doi/10.4171/RMI/1216&rft_dat=%3Cgale_cross%3EA658341783%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A658341783&rfr_iscdi=true