Strategy to improve the accuracy of convolutional neural network architectures applied to digital image steganalysis in the spatial domain

In recent years, Deep Learning techniques applied to steganalysis have surpassed the traditional two-stage approach by unifying feature extraction and classification in a single model, the Convolutional Neural Network (CNN). Several CNN architectures have been proposed to solve this task, improving...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PeerJ. Computer science 2021-04, Vol.7, p.e451-e451, Article 451
Hauptverfasser: Tabares-Soto, Reinel, Brayan Arteaga-Arteaga, Harold, Mora-Rubio, Alejandro, Alejandro Bravo-Ortiz, Mario, Arias-Garzon, Daniel, Alzate Grisales, Jesus Alejandro, Burbano Jacome, Alejandro, Orozco-Arias, Simon, Isaza, Gustavo, Ramos Pollan, Raul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e451
container_issue
container_start_page e451
container_title PeerJ. Computer science
container_volume 7
creator Tabares-Soto, Reinel
Brayan Arteaga-Arteaga, Harold
Mora-Rubio, Alejandro
Alejandro Bravo-Ortiz, Mario
Arias-Garzon, Daniel
Alzate Grisales, Jesus Alejandro
Burbano Jacome, Alejandro
Orozco-Arias, Simon
Isaza, Gustavo
Ramos Pollan, Raul
description In recent years, Deep Learning techniques applied to steganalysis have surpassed the traditional two-stage approach by unifying feature extraction and classification in a single model, the Convolutional Neural Network (CNN). Several CNN architectures have been proposed to solve this task, improving steganographic images' detection accuracy, but it is unclear which computational elements are relevant. Here we present a strategy to improve accuracy, convergence, and stability during training. The strategy involves a preprocessing stage with Spatial Rich Models filters, Spatial Dropout, Absolute Value layer, and Batch Normalization. Using the strategy improves the performance of three steganalysis CNNs and two image classification CNNs by enhancing the accuracy from 2% up to 10% while reducing the training time to less than 6 h and improving the networks' stability.
doi_str_mv 10.7717/peerj-cs.451
format Article
fullrecord <record><control><sourceid>gale_webof</sourceid><recordid>TN_cdi_gale_infotracmisc_A657879642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A657879642</galeid><doaj_id>oai_doaj_org_article_ec5bda4e460a487d82b6b5e4a0df3391</doaj_id><sourcerecordid>A657879642</sourcerecordid><originalsourceid>FETCH-LOGICAL-c579t-f1ee4847ea637dea0803b7d47b87d45601cba13b374bd3d38f0f4c79923d6a903</originalsourceid><addsrcrecordid>eNqNks2O0zAUhSMEYkZldqxRJDYgaLHjxE42SKOKn0ojITGwthz7JuOSxsF2OvQVeGpu2qFMEQtiKbbs756bHJ8keUrJQggq3gwAfj3XYZEX9EFynjHB50VVZQ_vrc-SixDWhBBaUHyqx8kZY1WRZ4yfJz-vo1cR2l0aXWo3g3dbSOMNpErr0Su9S12TatdvXTdG63rVpT3gwTTFW-e_pcrrGxtBx9FDSNUwdBbMpGZsayOCdqNaSAM2UVi-Czaktt_3CIOKFgnjNsr2T5JHjeoCXNzNs-Tr-3dflh_nV58-rJaXV3NdiCrOGwqQl7kAxZkwoEhJWC1MLuoS3wUnVNeKspqJvDbMsLIhTa4FGsEMVxVhs2R10DVOreXg8fv8Tjpl5X7D-VYqH63uQIIuaqNyyDlROcqXWc3rAnJFTIMeUtR6e9AaxnoDRkOPdnYnoqcnvb2RrdvKkuQVzRgKvLgT8O77CCHKjQ0auk714MYgsyLLOC1EKRB9_he6dqNHSyeKoh7hBftDtQp_wPaNw756EpWXfNKpON78LFn8g8JhYGPxuqGxuH9S8PKkAJkIP2KrxhDk6vrzKfv6wGrvQvDQHP2gRE6xlfvYSh0kxhbxZ_c9PMK_Q4pAeQBuoXZN0BZ6DUcMg81ZleEgU8aXmLkpqEs39hFLX_1_KfsFkJwMJQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2510490653</pqid></control><display><type>article</type><title>Strategy to improve the accuracy of convolutional neural network architectures applied to digital image steganalysis in the spatial domain</title><source>DOAJ Directory of Open Access Journals</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Tabares-Soto, Reinel ; Brayan Arteaga-Arteaga, Harold ; Mora-Rubio, Alejandro ; Alejandro Bravo-Ortiz, Mario ; Arias-Garzon, Daniel ; Alzate Grisales, Jesus Alejandro ; Burbano Jacome, Alejandro ; Orozco-Arias, Simon ; Isaza, Gustavo ; Ramos Pollan, Raul</creator><creatorcontrib>Tabares-Soto, Reinel ; Brayan Arteaga-Arteaga, Harold ; Mora-Rubio, Alejandro ; Alejandro Bravo-Ortiz, Mario ; Arias-Garzon, Daniel ; Alzate Grisales, Jesus Alejandro ; Burbano Jacome, Alejandro ; Orozco-Arias, Simon ; Isaza, Gustavo ; Ramos Pollan, Raul</creatorcontrib><description>In recent years, Deep Learning techniques applied to steganalysis have surpassed the traditional two-stage approach by unifying feature extraction and classification in a single model, the Convolutional Neural Network (CNN). Several CNN architectures have been proposed to solve this task, improving steganographic images' detection accuracy, but it is unclear which computational elements are relevant. Here we present a strategy to improve accuracy, convergence, and stability during training. The strategy involves a preprocessing stage with Spatial Rich Models filters, Spatial Dropout, Absolute Value layer, and Batch Normalization. Using the strategy improves the performance of three steganalysis CNNs and two image classification CNNs by enhancing the accuracy from 2% up to 10% while reducing the training time to less than 6 h and improving the networks' stability.</description><identifier>ISSN: 2376-5992</identifier><identifier>EISSN: 2376-5992</identifier><identifier>DOI: 10.7717/peerj-cs.451</identifier><identifier>PMID: 33954236</identifier><language>eng</language><publisher>LONDON: Peerj Inc</publisher><subject>Accuracy ; Algorithms ; Analysis ; Artificial Intelligence ; Artificial neural networks ; Cable television broadcasting industry ; Classification ; Computer architecture ; Computer Science ; Computer Science, Artificial Intelligence ; Computer Science, Information Systems ; Computer Science, Theory &amp; Methods ; Computer Vision ; Convolutional neural network ; Cryptography ; Deep learning ; Design ; Digital imaging ; Experiments ; Feature extraction ; Image classification ; Image enhancement ; Machine learning ; Neural networks ; Science &amp; Technology ; Security and Privacy ; Stability ; Steganalysis ; Steganography ; Strategy ; Technology ; Training ; Wavelet transforms</subject><ispartof>PeerJ. Computer science, 2021-04, Vol.7, p.e451-e451, Article 451</ispartof><rights>2021 Tabares-Soto et al.</rights><rights>COPYRIGHT 2021 PeerJ. Ltd.</rights><rights>2021 Tabares-Soto et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Tabares-Soto et al. 2021 Tabares-Soto et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>13</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000639292900001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c579t-f1ee4847ea637dea0803b7d47b87d45601cba13b374bd3d38f0f4c79923d6a903</citedby><cites>FETCH-LOGICAL-c579t-f1ee4847ea637dea0803b7d47b87d45601cba13b374bd3d38f0f4c79923d6a903</cites><orcidid>0000-0002-2341-5079 ; 0000-0001-5991-8770</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8049123/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8049123/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2106,2118,27933,27934,39267,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33954236$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tabares-Soto, Reinel</creatorcontrib><creatorcontrib>Brayan Arteaga-Arteaga, Harold</creatorcontrib><creatorcontrib>Mora-Rubio, Alejandro</creatorcontrib><creatorcontrib>Alejandro Bravo-Ortiz, Mario</creatorcontrib><creatorcontrib>Arias-Garzon, Daniel</creatorcontrib><creatorcontrib>Alzate Grisales, Jesus Alejandro</creatorcontrib><creatorcontrib>Burbano Jacome, Alejandro</creatorcontrib><creatorcontrib>Orozco-Arias, Simon</creatorcontrib><creatorcontrib>Isaza, Gustavo</creatorcontrib><creatorcontrib>Ramos Pollan, Raul</creatorcontrib><title>Strategy to improve the accuracy of convolutional neural network architectures applied to digital image steganalysis in the spatial domain</title><title>PeerJ. Computer science</title><addtitle>PEERJ COMPUT SCI</addtitle><addtitle>PeerJ Comput Sci</addtitle><description>In recent years, Deep Learning techniques applied to steganalysis have surpassed the traditional two-stage approach by unifying feature extraction and classification in a single model, the Convolutional Neural Network (CNN). Several CNN architectures have been proposed to solve this task, improving steganographic images' detection accuracy, but it is unclear which computational elements are relevant. Here we present a strategy to improve accuracy, convergence, and stability during training. The strategy involves a preprocessing stage with Spatial Rich Models filters, Spatial Dropout, Absolute Value layer, and Batch Normalization. Using the strategy improves the performance of three steganalysis CNNs and two image classification CNNs by enhancing the accuracy from 2% up to 10% while reducing the training time to less than 6 h and improving the networks' stability.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Cable television broadcasting industry</subject><subject>Classification</subject><subject>Computer architecture</subject><subject>Computer Science</subject><subject>Computer Science, Artificial Intelligence</subject><subject>Computer Science, Information Systems</subject><subject>Computer Science, Theory &amp; Methods</subject><subject>Computer Vision</subject><subject>Convolutional neural network</subject><subject>Cryptography</subject><subject>Deep learning</subject><subject>Design</subject><subject>Digital imaging</subject><subject>Experiments</subject><subject>Feature extraction</subject><subject>Image classification</subject><subject>Image enhancement</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Science &amp; Technology</subject><subject>Security and Privacy</subject><subject>Stability</subject><subject>Steganalysis</subject><subject>Steganography</subject><subject>Strategy</subject><subject>Technology</subject><subject>Training</subject><subject>Wavelet transforms</subject><issn>2376-5992</issn><issn>2376-5992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNks2O0zAUhSMEYkZldqxRJDYgaLHjxE42SKOKn0ojITGwthz7JuOSxsF2OvQVeGpu2qFMEQtiKbbs756bHJ8keUrJQggq3gwAfj3XYZEX9EFynjHB50VVZQ_vrc-SixDWhBBaUHyqx8kZY1WRZ4yfJz-vo1cR2l0aXWo3g3dbSOMNpErr0Su9S12TatdvXTdG63rVpT3gwTTFW-e_pcrrGxtBx9FDSNUwdBbMpGZsayOCdqNaSAM2UVi-Czaktt_3CIOKFgnjNsr2T5JHjeoCXNzNs-Tr-3dflh_nV58-rJaXV3NdiCrOGwqQl7kAxZkwoEhJWC1MLuoS3wUnVNeKspqJvDbMsLIhTa4FGsEMVxVhs2R10DVOreXg8fv8Tjpl5X7D-VYqH63uQIIuaqNyyDlROcqXWc3rAnJFTIMeUtR6e9AaxnoDRkOPdnYnoqcnvb2RrdvKkuQVzRgKvLgT8O77CCHKjQ0auk714MYgsyLLOC1EKRB9_he6dqNHSyeKoh7hBftDtQp_wPaNw756EpWXfNKpON78LFn8g8JhYGPxuqGxuH9S8PKkAJkIP2KrxhDk6vrzKfv6wGrvQvDQHP2gRE6xlfvYSh0kxhbxZ_c9PMK_Q4pAeQBuoXZN0BZ6DUcMg81ZleEgU8aXmLkpqEs39hFLX_1_KfsFkJwMJQ</recordid><startdate>20210409</startdate><enddate>20210409</enddate><creator>Tabares-Soto, Reinel</creator><creator>Brayan Arteaga-Arteaga, Harold</creator><creator>Mora-Rubio, Alejandro</creator><creator>Alejandro Bravo-Ortiz, Mario</creator><creator>Arias-Garzon, Daniel</creator><creator>Alzate Grisales, Jesus Alejandro</creator><creator>Burbano Jacome, Alejandro</creator><creator>Orozco-Arias, Simon</creator><creator>Isaza, Gustavo</creator><creator>Ramos Pollan, Raul</creator><general>Peerj Inc</general><general>PeerJ. Ltd</general><general>PeerJ, Inc</general><general>PeerJ Inc</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7XB</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2341-5079</orcidid><orcidid>https://orcid.org/0000-0001-5991-8770</orcidid></search><sort><creationdate>20210409</creationdate><title>Strategy to improve the accuracy of convolutional neural network architectures applied to digital image steganalysis in the spatial domain</title><author>Tabares-Soto, Reinel ; Brayan Arteaga-Arteaga, Harold ; Mora-Rubio, Alejandro ; Alejandro Bravo-Ortiz, Mario ; Arias-Garzon, Daniel ; Alzate Grisales, Jesus Alejandro ; Burbano Jacome, Alejandro ; Orozco-Arias, Simon ; Isaza, Gustavo ; Ramos Pollan, Raul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c579t-f1ee4847ea637dea0803b7d47b87d45601cba13b374bd3d38f0f4c79923d6a903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Cable television broadcasting industry</topic><topic>Classification</topic><topic>Computer architecture</topic><topic>Computer Science</topic><topic>Computer Science, Artificial Intelligence</topic><topic>Computer Science, Information Systems</topic><topic>Computer Science, Theory &amp; Methods</topic><topic>Computer Vision</topic><topic>Convolutional neural network</topic><topic>Cryptography</topic><topic>Deep learning</topic><topic>Design</topic><topic>Digital imaging</topic><topic>Experiments</topic><topic>Feature extraction</topic><topic>Image classification</topic><topic>Image enhancement</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Science &amp; Technology</topic><topic>Security and Privacy</topic><topic>Stability</topic><topic>Steganalysis</topic><topic>Steganography</topic><topic>Strategy</topic><topic>Technology</topic><topic>Training</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tabares-Soto, Reinel</creatorcontrib><creatorcontrib>Brayan Arteaga-Arteaga, Harold</creatorcontrib><creatorcontrib>Mora-Rubio, Alejandro</creatorcontrib><creatorcontrib>Alejandro Bravo-Ortiz, Mario</creatorcontrib><creatorcontrib>Arias-Garzon, Daniel</creatorcontrib><creatorcontrib>Alzate Grisales, Jesus Alejandro</creatorcontrib><creatorcontrib>Burbano Jacome, Alejandro</creatorcontrib><creatorcontrib>Orozco-Arias, Simon</creatorcontrib><creatorcontrib>Isaza, Gustavo</creatorcontrib><creatorcontrib>Ramos Pollan, Raul</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PeerJ. Computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tabares-Soto, Reinel</au><au>Brayan Arteaga-Arteaga, Harold</au><au>Mora-Rubio, Alejandro</au><au>Alejandro Bravo-Ortiz, Mario</au><au>Arias-Garzon, Daniel</au><au>Alzate Grisales, Jesus Alejandro</au><au>Burbano Jacome, Alejandro</au><au>Orozco-Arias, Simon</au><au>Isaza, Gustavo</au><au>Ramos Pollan, Raul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strategy to improve the accuracy of convolutional neural network architectures applied to digital image steganalysis in the spatial domain</atitle><jtitle>PeerJ. Computer science</jtitle><stitle>PEERJ COMPUT SCI</stitle><addtitle>PeerJ Comput Sci</addtitle><date>2021-04-09</date><risdate>2021</risdate><volume>7</volume><spage>e451</spage><epage>e451</epage><pages>e451-e451</pages><artnum>451</artnum><artnum>e451</artnum><issn>2376-5992</issn><eissn>2376-5992</eissn><abstract>In recent years, Deep Learning techniques applied to steganalysis have surpassed the traditional two-stage approach by unifying feature extraction and classification in a single model, the Convolutional Neural Network (CNN). Several CNN architectures have been proposed to solve this task, improving steganographic images' detection accuracy, but it is unclear which computational elements are relevant. Here we present a strategy to improve accuracy, convergence, and stability during training. The strategy involves a preprocessing stage with Spatial Rich Models filters, Spatial Dropout, Absolute Value layer, and Batch Normalization. Using the strategy improves the performance of three steganalysis CNNs and two image classification CNNs by enhancing the accuracy from 2% up to 10% while reducing the training time to less than 6 h and improving the networks' stability.</abstract><cop>LONDON</cop><pub>Peerj Inc</pub><pmid>33954236</pmid><doi>10.7717/peerj-cs.451</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-2341-5079</orcidid><orcidid>https://orcid.org/0000-0001-5991-8770</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2376-5992
ispartof PeerJ. Computer science, 2021-04, Vol.7, p.e451-e451, Article 451
issn 2376-5992
2376-5992
language eng
recordid cdi_gale_infotracmisc_A657879642
source DOAJ Directory of Open Access Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Accuracy
Algorithms
Analysis
Artificial Intelligence
Artificial neural networks
Cable television broadcasting industry
Classification
Computer architecture
Computer Science
Computer Science, Artificial Intelligence
Computer Science, Information Systems
Computer Science, Theory & Methods
Computer Vision
Convolutional neural network
Cryptography
Deep learning
Design
Digital imaging
Experiments
Feature extraction
Image classification
Image enhancement
Machine learning
Neural networks
Science & Technology
Security and Privacy
Stability
Steganalysis
Steganography
Strategy
Technology
Training
Wavelet transforms
title Strategy to improve the accuracy of convolutional neural network architectures applied to digital image steganalysis in the spatial domain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T09%3A36%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strategy%20to%20improve%20the%20accuracy%20of%20convolutional%20neural%20network%20architectures%20applied%20to%20digital%20image%20steganalysis%20in%20the%20spatial%20domain&rft.jtitle=PeerJ.%20Computer%20science&rft.au=Tabares-Soto,%20Reinel&rft.date=2021-04-09&rft.volume=7&rft.spage=e451&rft.epage=e451&rft.pages=e451-e451&rft.artnum=451&rft.issn=2376-5992&rft.eissn=2376-5992&rft_id=info:doi/10.7717/peerj-cs.451&rft_dat=%3Cgale_webof%3EA657879642%3C/gale_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2510490653&rft_id=info:pmid/33954236&rft_galeid=A657879642&rft_doaj_id=oai_doaj_org_article_ec5bda4e460a487d82b6b5e4a0df3391&rfr_iscdi=true