Sources of auriferous fluids associated with a Neoarchean BIF-hosted orogenic gold deposit revealed by the multiple sulfur isotopic compositions of zoned pyrites
Internal textures, multiple sulfur isotopic compositions, and contents of gold, selenium, and molybdenum of ore-related pyrites from a Neoarchean carbonate-facies BIF-hosted gold deposit in Quadrilátero Ferrífero were investigated to elucidate the source(s) of sulfur. Sodium hypochlorite etching and...
Gespeichert in:
Veröffentlicht in: | Contributions to mineralogy and petrology 2021-04, Vol.176 (4), Article 29 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Contributions to mineralogy and petrology |
container_volume | 176 |
creator | Liu, Li Ireland, Trevor R. Holden, Peter Ávila, Janaina Vasconcelos, Paulo Mavrogenes, John |
description | Internal textures, multiple sulfur isotopic compositions, and contents of gold, selenium, and molybdenum of ore-related pyrites from a Neoarchean carbonate-facies BIF-hosted gold deposit in Quadrilátero Ferrífero were investigated to elucidate the source(s) of sulfur. Sodium hypochlorite etching and BSE imaging revealed pervasive zoning in pyrites. Five different growth zones (Py1a, Py1b, Py2, Py3, and Py4) and six types of zoning (Type A–Type F) were identified. Two pyrite generations were distinguished in ores: G1 (Py1a and Py1b) and G2 (Py2, Py3, Py4). Both G1 and G2 have positive Δ
33
S, but the magnitudes of G1 are higher. The G1-relevant fluids can be shallow-sourced, whereas the G2-related auriferous fluids are most likely deep-sourced metamorphic fluids derived from devolatilization of the lower succession of the Nova Lima Group (metavolcanics and metasedimentary rocks) during metamorphism, with fluid–rock interactions during fluid ascent and at the depositional site. The negative δ
34
S, higher selenium contents, and carbonates inclusions of Py1a contrast with the positive δ
34
S, lower selenium contents, and carbonaceous material inclusions of Py2, Py3, and Py4. The Lamego system possibly started with shallow-sourced oxidized and low-gold fluids (Py1a), closely followed by mixing in of deep-seated reduced auriferous fluids (Py2, Py3, Py4) initiated by tectonic activities. The oscillatory zoning of Py2 with the highest gold contents consists of alternating gold-rich and gold-poor laminae, indicating that fault-valve activity is a trigger of gold deposition. The sulfidation of siderite in BIF (desulfidation of auriferous fluids) related to the formation of ore-related pyrites also contributed to gold precipitation. |
doi_str_mv | 10.1007/s00410-021-01788-3 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_gale_infotracmisc_A657048560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A657048560</galeid><sourcerecordid>A657048560</sourcerecordid><originalsourceid>FETCH-LOGICAL-a447t-148dde832010630d0ac3c0493a19585162277bad2a69924c0ed9ada7c16807103</originalsourceid><addsrcrecordid>eNp9ksFu1DAQhiMEEkvhBThZ4pwytpM4PpaKQqUKDsDZcu3JrqskDh4HtLwNb4p3FwmQVsgHy57_G_sf_VX1ksMlB1CvCaDhUIPgNXDV97V8VG14I0UNulOPqw1AKSut9dPqGdEDlHOv203181Nck0NicWB2TWHAFFdiw7gGT8wSRRdsRs--h7xjln3AaJPboZ3Zm9ubehfpUIwpbnEOjm3j6JnHJVLILOE3tGMp3-9Z3iGb1jGHZURG6zisiQWKOS6FcnE6EiHOx4_8iHOhln0KGel59WSwI-GL3_tF9eXm7efr9_Xdx3e311d3tW0alWve9N5jL0Ux2knwYJ100GhpuW77lndCKHVvvbCd1qJxgF5bb5XjXQ-Kg7yoXp36Lil-XZGyeSijmcuTRrSgZCd68ZdqW5yZMA8xJ-umQM5cda2Cpm-7g6o-oyojwmTHYm4I5fof_eUZfVkep-DOAuIEuBSJEg5mSWGyaW84mEMizCkRpiTCHBNhZIHkCaIinreY_jj8D_UL_8a5tA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2507362820</pqid></control><display><type>article</type><title>Sources of auriferous fluids associated with a Neoarchean BIF-hosted orogenic gold deposit revealed by the multiple sulfur isotopic compositions of zoned pyrites</title><source>SpringerLink Journals - AutoHoldings</source><creator>Liu, Li ; Ireland, Trevor R. ; Holden, Peter ; Ávila, Janaina ; Vasconcelos, Paulo ; Mavrogenes, John</creator><creatorcontrib>Liu, Li ; Ireland, Trevor R. ; Holden, Peter ; Ávila, Janaina ; Vasconcelos, Paulo ; Mavrogenes, John</creatorcontrib><description>Internal textures, multiple sulfur isotopic compositions, and contents of gold, selenium, and molybdenum of ore-related pyrites from a Neoarchean carbonate-facies BIF-hosted gold deposit in Quadrilátero Ferrífero were investigated to elucidate the source(s) of sulfur. Sodium hypochlorite etching and BSE imaging revealed pervasive zoning in pyrites. Five different growth zones (Py1a, Py1b, Py2, Py3, and Py4) and six types of zoning (Type A–Type F) were identified. Two pyrite generations were distinguished in ores: G1 (Py1a and Py1b) and G2 (Py2, Py3, Py4). Both G1 and G2 have positive Δ
33
S, but the magnitudes of G1 are higher. The G1-relevant fluids can be shallow-sourced, whereas the G2-related auriferous fluids are most likely deep-sourced metamorphic fluids derived from devolatilization of the lower succession of the Nova Lima Group (metavolcanics and metasedimentary rocks) during metamorphism, with fluid–rock interactions during fluid ascent and at the depositional site. The negative δ
34
S, higher selenium contents, and carbonates inclusions of Py1a contrast with the positive δ
34
S, lower selenium contents, and carbonaceous material inclusions of Py2, Py3, and Py4. The Lamego system possibly started with shallow-sourced oxidized and low-gold fluids (Py1a), closely followed by mixing in of deep-seated reduced auriferous fluids (Py2, Py3, Py4) initiated by tectonic activities. The oscillatory zoning of Py2 with the highest gold contents consists of alternating gold-rich and gold-poor laminae, indicating that fault-valve activity is a trigger of gold deposition. The sulfidation of siderite in BIF (desulfidation of auriferous fluids) related to the formation of ore-related pyrites also contributed to gold precipitation.</description><identifier>ISSN: 0010-7999</identifier><identifier>EISSN: 1432-0967</identifier><identifier>DOI: 10.1007/s00410-021-01788-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Ascent ; Carbonaceous materials ; Carbonates ; Composition ; Devolatilization ; Earth and Environmental Science ; Earth Sciences ; Fluids ; Geology ; Gold ; Gold industry ; Inclusions ; Isotopes ; Laminates ; Metamorphism ; Metamorphism (Geology) ; Mineral Resources ; Mineralogy ; Molybdenum ; Ores ; Original Paper ; Orogeny ; Petrology ; Pyrite ; Rocks ; Rocks, Metamorphic ; Rocks, Sedimentary ; Selenium ; Siderite ; Sodium ; Sodium hypochlorite ; Sulfidation ; Sulfur ; Sulfur compounds ; Sulphur ; Tectonics ; Zoning</subject><ispartof>Contributions to mineralogy and petrology, 2021-04, Vol.176 (4), Article 29</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a447t-148dde832010630d0ac3c0493a19585162277bad2a69924c0ed9ada7c16807103</citedby><cites>FETCH-LOGICAL-a447t-148dde832010630d0ac3c0493a19585162277bad2a69924c0ed9ada7c16807103</cites><orcidid>0000-0002-9928-1281</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00410-021-01788-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00410-021-01788-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Liu, Li</creatorcontrib><creatorcontrib>Ireland, Trevor R.</creatorcontrib><creatorcontrib>Holden, Peter</creatorcontrib><creatorcontrib>Ávila, Janaina</creatorcontrib><creatorcontrib>Vasconcelos, Paulo</creatorcontrib><creatorcontrib>Mavrogenes, John</creatorcontrib><title>Sources of auriferous fluids associated with a Neoarchean BIF-hosted orogenic gold deposit revealed by the multiple sulfur isotopic compositions of zoned pyrites</title><title>Contributions to mineralogy and petrology</title><addtitle>Contrib Mineral Petrol</addtitle><description>Internal textures, multiple sulfur isotopic compositions, and contents of gold, selenium, and molybdenum of ore-related pyrites from a Neoarchean carbonate-facies BIF-hosted gold deposit in Quadrilátero Ferrífero were investigated to elucidate the source(s) of sulfur. Sodium hypochlorite etching and BSE imaging revealed pervasive zoning in pyrites. Five different growth zones (Py1a, Py1b, Py2, Py3, and Py4) and six types of zoning (Type A–Type F) were identified. Two pyrite generations were distinguished in ores: G1 (Py1a and Py1b) and G2 (Py2, Py3, Py4). Both G1 and G2 have positive Δ
33
S, but the magnitudes of G1 are higher. The G1-relevant fluids can be shallow-sourced, whereas the G2-related auriferous fluids are most likely deep-sourced metamorphic fluids derived from devolatilization of the lower succession of the Nova Lima Group (metavolcanics and metasedimentary rocks) during metamorphism, with fluid–rock interactions during fluid ascent and at the depositional site. The negative δ
34
S, higher selenium contents, and carbonates inclusions of Py1a contrast with the positive δ
34
S, lower selenium contents, and carbonaceous material inclusions of Py2, Py3, and Py4. The Lamego system possibly started with shallow-sourced oxidized and low-gold fluids (Py1a), closely followed by mixing in of deep-seated reduced auriferous fluids (Py2, Py3, Py4) initiated by tectonic activities. The oscillatory zoning of Py2 with the highest gold contents consists of alternating gold-rich and gold-poor laminae, indicating that fault-valve activity is a trigger of gold deposition. The sulfidation of siderite in BIF (desulfidation of auriferous fluids) related to the formation of ore-related pyrites also contributed to gold precipitation.</description><subject>Ascent</subject><subject>Carbonaceous materials</subject><subject>Carbonates</subject><subject>Composition</subject><subject>Devolatilization</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Fluids</subject><subject>Geology</subject><subject>Gold</subject><subject>Gold industry</subject><subject>Inclusions</subject><subject>Isotopes</subject><subject>Laminates</subject><subject>Metamorphism</subject><subject>Metamorphism (Geology)</subject><subject>Mineral Resources</subject><subject>Mineralogy</subject><subject>Molybdenum</subject><subject>Ores</subject><subject>Original Paper</subject><subject>Orogeny</subject><subject>Petrology</subject><subject>Pyrite</subject><subject>Rocks</subject><subject>Rocks, Metamorphic</subject><subject>Rocks, Sedimentary</subject><subject>Selenium</subject><subject>Siderite</subject><subject>Sodium</subject><subject>Sodium hypochlorite</subject><subject>Sulfidation</subject><subject>Sulfur</subject><subject>Sulfur compounds</subject><subject>Sulphur</subject><subject>Tectonics</subject><subject>Zoning</subject><issn>0010-7999</issn><issn>1432-0967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9ksFu1DAQhiMEEkvhBThZ4pwytpM4PpaKQqUKDsDZcu3JrqskDh4HtLwNb4p3FwmQVsgHy57_G_sf_VX1ksMlB1CvCaDhUIPgNXDV97V8VG14I0UNulOPqw1AKSut9dPqGdEDlHOv203181Nck0NicWB2TWHAFFdiw7gGT8wSRRdsRs--h7xjln3AaJPboZ3Zm9ubehfpUIwpbnEOjm3j6JnHJVLILOE3tGMp3-9Z3iGb1jGHZURG6zisiQWKOS6FcnE6EiHOx4_8iHOhln0KGel59WSwI-GL3_tF9eXm7efr9_Xdx3e311d3tW0alWve9N5jL0Ux2knwYJ100GhpuW77lndCKHVvvbCd1qJxgF5bb5XjXQ-Kg7yoXp36Lil-XZGyeSijmcuTRrSgZCd68ZdqW5yZMA8xJ-umQM5cda2Cpm-7g6o-oyojwmTHYm4I5fof_eUZfVkep-DOAuIEuBSJEg5mSWGyaW84mEMizCkRpiTCHBNhZIHkCaIinreY_jj8D_UL_8a5tA</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Liu, Li</creator><creator>Ireland, Trevor R.</creator><creator>Holden, Peter</creator><creator>Ávila, Janaina</creator><creator>Vasconcelos, Paulo</creator><creator>Mavrogenes, John</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L.G</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>R05</scope><orcidid>https://orcid.org/0000-0002-9928-1281</orcidid></search><sort><creationdate>20210401</creationdate><title>Sources of auriferous fluids associated with a Neoarchean BIF-hosted orogenic gold deposit revealed by the multiple sulfur isotopic compositions of zoned pyrites</title><author>Liu, Li ; Ireland, Trevor R. ; Holden, Peter ; Ávila, Janaina ; Vasconcelos, Paulo ; Mavrogenes, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a447t-148dde832010630d0ac3c0493a19585162277bad2a69924c0ed9ada7c16807103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ascent</topic><topic>Carbonaceous materials</topic><topic>Carbonates</topic><topic>Composition</topic><topic>Devolatilization</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Fluids</topic><topic>Geology</topic><topic>Gold</topic><topic>Gold industry</topic><topic>Inclusions</topic><topic>Isotopes</topic><topic>Laminates</topic><topic>Metamorphism</topic><topic>Metamorphism (Geology)</topic><topic>Mineral Resources</topic><topic>Mineralogy</topic><topic>Molybdenum</topic><topic>Ores</topic><topic>Original Paper</topic><topic>Orogeny</topic><topic>Petrology</topic><topic>Pyrite</topic><topic>Rocks</topic><topic>Rocks, Metamorphic</topic><topic>Rocks, Sedimentary</topic><topic>Selenium</topic><topic>Siderite</topic><topic>Sodium</topic><topic>Sodium hypochlorite</topic><topic>Sulfidation</topic><topic>Sulfur</topic><topic>Sulfur compounds</topic><topic>Sulphur</topic><topic>Tectonics</topic><topic>Zoning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Li</creatorcontrib><creatorcontrib>Ireland, Trevor R.</creatorcontrib><creatorcontrib>Holden, Peter</creatorcontrib><creatorcontrib>Ávila, Janaina</creatorcontrib><creatorcontrib>Vasconcelos, Paulo</creatorcontrib><creatorcontrib>Mavrogenes, John</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Materials Science Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><jtitle>Contributions to mineralogy and petrology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Li</au><au>Ireland, Trevor R.</au><au>Holden, Peter</au><au>Ávila, Janaina</au><au>Vasconcelos, Paulo</au><au>Mavrogenes, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sources of auriferous fluids associated with a Neoarchean BIF-hosted orogenic gold deposit revealed by the multiple sulfur isotopic compositions of zoned pyrites</atitle><jtitle>Contributions to mineralogy and petrology</jtitle><stitle>Contrib Mineral Petrol</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>176</volume><issue>4</issue><artnum>29</artnum><issn>0010-7999</issn><eissn>1432-0967</eissn><abstract>Internal textures, multiple sulfur isotopic compositions, and contents of gold, selenium, and molybdenum of ore-related pyrites from a Neoarchean carbonate-facies BIF-hosted gold deposit in Quadrilátero Ferrífero were investigated to elucidate the source(s) of sulfur. Sodium hypochlorite etching and BSE imaging revealed pervasive zoning in pyrites. Five different growth zones (Py1a, Py1b, Py2, Py3, and Py4) and six types of zoning (Type A–Type F) were identified. Two pyrite generations were distinguished in ores: G1 (Py1a and Py1b) and G2 (Py2, Py3, Py4). Both G1 and G2 have positive Δ
33
S, but the magnitudes of G1 are higher. The G1-relevant fluids can be shallow-sourced, whereas the G2-related auriferous fluids are most likely deep-sourced metamorphic fluids derived from devolatilization of the lower succession of the Nova Lima Group (metavolcanics and metasedimentary rocks) during metamorphism, with fluid–rock interactions during fluid ascent and at the depositional site. The negative δ
34
S, higher selenium contents, and carbonates inclusions of Py1a contrast with the positive δ
34
S, lower selenium contents, and carbonaceous material inclusions of Py2, Py3, and Py4. The Lamego system possibly started with shallow-sourced oxidized and low-gold fluids (Py1a), closely followed by mixing in of deep-seated reduced auriferous fluids (Py2, Py3, Py4) initiated by tectonic activities. The oscillatory zoning of Py2 with the highest gold contents consists of alternating gold-rich and gold-poor laminae, indicating that fault-valve activity is a trigger of gold deposition. The sulfidation of siderite in BIF (desulfidation of auriferous fluids) related to the formation of ore-related pyrites also contributed to gold precipitation.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00410-021-01788-3</doi><orcidid>https://orcid.org/0000-0002-9928-1281</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-7999 |
ispartof | Contributions to mineralogy and petrology, 2021-04, Vol.176 (4), Article 29 |
issn | 0010-7999 1432-0967 |
language | eng |
recordid | cdi_gale_infotracmisc_A657048560 |
source | SpringerLink Journals - AutoHoldings |
subjects | Ascent Carbonaceous materials Carbonates Composition Devolatilization Earth and Environmental Science Earth Sciences Fluids Geology Gold Gold industry Inclusions Isotopes Laminates Metamorphism Metamorphism (Geology) Mineral Resources Mineralogy Molybdenum Ores Original Paper Orogeny Petrology Pyrite Rocks Rocks, Metamorphic Rocks, Sedimentary Selenium Siderite Sodium Sodium hypochlorite Sulfidation Sulfur Sulfur compounds Sulphur Tectonics Zoning |
title | Sources of auriferous fluids associated with a Neoarchean BIF-hosted orogenic gold deposit revealed by the multiple sulfur isotopic compositions of zoned pyrites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A59%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sources%20of%20auriferous%20fluids%20associated%20with%20a%20Neoarchean%20BIF-hosted%20orogenic%20gold%20deposit%20revealed%20by%20the%20multiple%20sulfur%20isotopic%20compositions%20of%20zoned%20pyrites&rft.jtitle=Contributions%20to%20mineralogy%20and%20petrology&rft.au=Liu,%20Li&rft.date=2021-04-01&rft.volume=176&rft.issue=4&rft.artnum=29&rft.issn=0010-7999&rft.eissn=1432-0967&rft_id=info:doi/10.1007/s00410-021-01788-3&rft_dat=%3Cgale_proqu%3EA657048560%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2507362820&rft_id=info:pmid/&rft_galeid=A657048560&rfr_iscdi=true |