N-cadherin upregulation mediates adaptive radioresistance in glioblastoma
Glioblastoma (GBM) is composed of heterogeneous tumor cell populations, including those with stem cell properties, termed glioma stem cells (GSCs). GSCs are innately less radiation sensitive than the tumor bulk and are believed to drive GBM formation and recurrence after repeated irradiation. Howeve...
Gespeichert in:
Veröffentlicht in: | The Journal of clinical investigation 2021-03, Vol.131 (6), Article 136098 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | |
container_title | The Journal of clinical investigation |
container_volume | 131 |
creator | Osuka, Satoru Zhu, Dan Zhang, Zhaobin Li, Chaoxi Stackhouse, Christian T. Sampetrean, Oltea Olson, Jeffrey J. Gillespie, G. Yancey Saya, Hideyuki Willey, Christopher D. Van Meir, Erwin G. |
description | Glioblastoma (GBM) is composed of heterogeneous tumor cell populations, including those with stem cell properties, termed glioma stem cells (GSCs). GSCs are innately less radiation sensitive than the tumor bulk and are believed to drive GBM formation and recurrence after repeated irradiation. However, it is unclear how GSCs adapt to escape the toxicity of repeated irradiation used in clinical practice. To identify important mediators of adaptive radioresistance in GBM, we generated radioresistant human and mouse GSCs by exposing them to repeat cycles of irradiation. Surviving subpopulations acquired strong radioresistance in vivo, which was accompanied by a reduction in cell proliferation and an increase in cell-cell adhesion and N-cadherin expression. Increasing N-cadherin expression rendered parental GSCs radioresistant, reduced their proliferation, and increased their stemness and intercellular adhesive properties. Conversely, radioresistant GSCs lost their acquired phenotypes upon CRISPR/Cas9-mediated knockout of N-cadherin. Mechanistically, elevated N-cadherin expression resulted in the accumulation of ?-catenin at the cell surface, which suppressed Wnt/?-catenin proliferative signaling, reduced neural differentiation, and protected against apoptosis through Clusterin secretion. N-cadherin upregulation was induced by radiation-induced IGF1 secretion, and the radiation resistance phenotype could be reverted with picropodophyllin, a clinically applicable blood-brain-barrier permeable IGF1 receptor inhibitor, supporting clinical translation. |
doi_str_mv | 10.1172/JCI136098 |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracmisc_A655844837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A655844837</galeid><sourcerecordid>A655844837</sourcerecordid><originalsourceid>FETCH-LOGICAL-c619t-f192ea81476162a0a3fc75d3f0a9450b8c5fbeb68157d4611d10b0c0078919fe3</originalsourceid><addsrcrecordid>eNqN0l2L1DAUBuAgijuuXvgHpCAIi3Q9aZo0vRGWsurI4oJftyFNTzqRthmadNV_b9bRYQfmYulFS_ucl3D6EvKcwjmlVfHmY7OmTEAtH5AV5VzmsmDyIVkBFDSvKyZPyJMQfgDQsuTlY3LCWFUAcFiR9afc6G6Ds5uyZTtjvww6Oj9lI3ZORwyZ7vQ2uhvMZt05P2NwIerJYJYm-sH5dtAh-lE_JY-sHgI--3c_Jd_eXX5tPuRX1-_XzcVVbgStY25pXaCWtKwEFYUGzaypeMcs6Lrk0ErDbYutkJRXXSko7Si0YAAqWdPaIjslb3e526VNhzQ4xVkPaju7Uc-_lddOHX6Z3Eb1_kZVNS95zVPAy11ArwdUbrI-MTO6YNSFSNsrS8mqpPIjqscJU6af0Lr0-sCfH_Hp6nB05ujA2cFAMhF_xV4vIaj1l8_3t9ffD-2rO3aDeoib4Ifl9q-Go6Fm9iHMaPc7pKBue6X2vUr2xd2l7-X_IiXwegd-YuttMA5TRfYMAIRglEqRnoAlLe-vGxf_VrLxyxTZH9OY5cg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>N-cadherin upregulation mediates adaptive radioresistance in glioblastoma</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Osuka, Satoru ; Zhu, Dan ; Zhang, Zhaobin ; Li, Chaoxi ; Stackhouse, Christian T. ; Sampetrean, Oltea ; Olson, Jeffrey J. ; Gillespie, G. Yancey ; Saya, Hideyuki ; Willey, Christopher D. ; Van Meir, Erwin G.</creator><creatorcontrib>Osuka, Satoru ; Zhu, Dan ; Zhang, Zhaobin ; Li, Chaoxi ; Stackhouse, Christian T. ; Sampetrean, Oltea ; Olson, Jeffrey J. ; Gillespie, G. Yancey ; Saya, Hideyuki ; Willey, Christopher D. ; Van Meir, Erwin G.</creatorcontrib><description>Glioblastoma (GBM) is composed of heterogeneous tumor cell populations, including those with stem cell properties, termed glioma stem cells (GSCs). GSCs are innately less radiation sensitive than the tumor bulk and are believed to drive GBM formation and recurrence after repeated irradiation. However, it is unclear how GSCs adapt to escape the toxicity of repeated irradiation used in clinical practice. To identify important mediators of adaptive radioresistance in GBM, we generated radioresistant human and mouse GSCs by exposing them to repeat cycles of irradiation. Surviving subpopulations acquired strong radioresistance in vivo, which was accompanied by a reduction in cell proliferation and an increase in cell-cell adhesion and N-cadherin expression. Increasing N-cadherin expression rendered parental GSCs radioresistant, reduced their proliferation, and increased their stemness and intercellular adhesive properties. Conversely, radioresistant GSCs lost their acquired phenotypes upon CRISPR/Cas9-mediated knockout of N-cadherin. Mechanistically, elevated N-cadherin expression resulted in the accumulation of ?-catenin at the cell surface, which suppressed Wnt/?-catenin proliferative signaling, reduced neural differentiation, and protected against apoptosis through Clusterin secretion. N-cadherin upregulation was induced by radiation-induced IGF1 secretion, and the radiation resistance phenotype could be reverted with picropodophyllin, a clinically applicable blood-brain-barrier permeable IGF1 receptor inhibitor, supporting clinical translation.</description><identifier>ISSN: 0021-9738</identifier><identifier>EISSN: 1558-8238</identifier><identifier>DOI: 10.1172/JCI136098</identifier><identifier>PMID: 33720050</identifier><language>eng</language><publisher>ANN ARBOR: Amer Soc Clinical Investigation Inc</publisher><subject><![CDATA[Adaptation, Physiological ; Animals ; Antigens, CD - genetics ; Antigens, CD - metabolism ; Apoptosis ; Brain Neoplasms - metabolism ; Brain Neoplasms - pathology ; Brain Neoplasms - radiotherapy ; Cadherins ; Cadherins - antagonists & inhibitors ; Cadherins - genetics ; Cadherins - metabolism ; Care and treatment ; Cell Adhesion ; Cell Line, Tumor ; Cell Proliferation ; Clusterin - antagonists & inhibitors ; Clusterin - genetics ; Clusterin - metabolism ; Development and progression ; Female ; Gene Knockout Techniques ; Glioblastoma - metabolism ; Glioblastoma - pathology ; Glioblastoma - radiotherapy ; Glioblastoma multiforme ; Health aspects ; Humans ; Insulin-like growth factor 1 ; Life Sciences & Biomedicine ; Medicine, Research & Experimental ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Mice, Nude ; Neoplastic Stem Cells - metabolism ; Neoplastic Stem Cells - pathology ; Neoplastic Stem Cells - radiation effects ; Physiological aspects ; Radiation Tolerance - genetics ; Radiation Tolerance - physiology ; Radiotherapy ; Research & Experimental Medicine ; Science & Technology ; Up-Regulation ; Wnt Signaling Pathway ; Xenograft Model Antitumor Assays]]></subject><ispartof>The Journal of clinical investigation, 2021-03, Vol.131 (6), Article 136098</ispartof><rights>COPYRIGHT 2021 American Society for Clinical Investigation</rights><rights>2021 American Society for Clinical Investigation 2021 American Society for Clinical Investigation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>54</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000663118600003</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c619t-f192ea81476162a0a3fc75d3f0a9450b8c5fbeb68157d4611d10b0c0078919fe3</citedby><cites>FETCH-LOGICAL-c619t-f192ea81476162a0a3fc75d3f0a9450b8c5fbeb68157d4611d10b0c0078919fe3</cites><orcidid>0000-0002-9968-681X ; 0000-0001-5783-1049 ; 0000-0001-6436-9542 ; 0000-0003-2186-2112</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7954595/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7954595/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,729,782,786,887,27933,27934,39267,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33720050$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Osuka, Satoru</creatorcontrib><creatorcontrib>Zhu, Dan</creatorcontrib><creatorcontrib>Zhang, Zhaobin</creatorcontrib><creatorcontrib>Li, Chaoxi</creatorcontrib><creatorcontrib>Stackhouse, Christian T.</creatorcontrib><creatorcontrib>Sampetrean, Oltea</creatorcontrib><creatorcontrib>Olson, Jeffrey J.</creatorcontrib><creatorcontrib>Gillespie, G. Yancey</creatorcontrib><creatorcontrib>Saya, Hideyuki</creatorcontrib><creatorcontrib>Willey, Christopher D.</creatorcontrib><creatorcontrib>Van Meir, Erwin G.</creatorcontrib><title>N-cadherin upregulation mediates adaptive radioresistance in glioblastoma</title><title>The Journal of clinical investigation</title><addtitle>J CLIN INVEST</addtitle><addtitle>J Clin Invest</addtitle><description>Glioblastoma (GBM) is composed of heterogeneous tumor cell populations, including those with stem cell properties, termed glioma stem cells (GSCs). GSCs are innately less radiation sensitive than the tumor bulk and are believed to drive GBM formation and recurrence after repeated irradiation. However, it is unclear how GSCs adapt to escape the toxicity of repeated irradiation used in clinical practice. To identify important mediators of adaptive radioresistance in GBM, we generated radioresistant human and mouse GSCs by exposing them to repeat cycles of irradiation. Surviving subpopulations acquired strong radioresistance in vivo, which was accompanied by a reduction in cell proliferation and an increase in cell-cell adhesion and N-cadherin expression. Increasing N-cadherin expression rendered parental GSCs radioresistant, reduced their proliferation, and increased their stemness and intercellular adhesive properties. Conversely, radioresistant GSCs lost their acquired phenotypes upon CRISPR/Cas9-mediated knockout of N-cadherin. Mechanistically, elevated N-cadherin expression resulted in the accumulation of ?-catenin at the cell surface, which suppressed Wnt/?-catenin proliferative signaling, reduced neural differentiation, and protected against apoptosis through Clusterin secretion. N-cadherin upregulation was induced by radiation-induced IGF1 secretion, and the radiation resistance phenotype could be reverted with picropodophyllin, a clinically applicable blood-brain-barrier permeable IGF1 receptor inhibitor, supporting clinical translation.</description><subject>Adaptation, Physiological</subject><subject>Animals</subject><subject>Antigens, CD - genetics</subject><subject>Antigens, CD - metabolism</subject><subject>Apoptosis</subject><subject>Brain Neoplasms - metabolism</subject><subject>Brain Neoplasms - pathology</subject><subject>Brain Neoplasms - radiotherapy</subject><subject>Cadherins</subject><subject>Cadherins - antagonists & inhibitors</subject><subject>Cadherins - genetics</subject><subject>Cadherins - metabolism</subject><subject>Care and treatment</subject><subject>Cell Adhesion</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation</subject><subject>Clusterin - antagonists & inhibitors</subject><subject>Clusterin - genetics</subject><subject>Clusterin - metabolism</subject><subject>Development and progression</subject><subject>Female</subject><subject>Gene Knockout Techniques</subject><subject>Glioblastoma - metabolism</subject><subject>Glioblastoma - pathology</subject><subject>Glioblastoma - radiotherapy</subject><subject>Glioblastoma multiforme</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Insulin-like growth factor 1</subject><subject>Life Sciences & Biomedicine</subject><subject>Medicine, Research & Experimental</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Mice, Nude</subject><subject>Neoplastic Stem Cells - metabolism</subject><subject>Neoplastic Stem Cells - pathology</subject><subject>Neoplastic Stem Cells - radiation effects</subject><subject>Physiological aspects</subject><subject>Radiation Tolerance - genetics</subject><subject>Radiation Tolerance - physiology</subject><subject>Radiotherapy</subject><subject>Research & Experimental Medicine</subject><subject>Science & Technology</subject><subject>Up-Regulation</subject><subject>Wnt Signaling Pathway</subject><subject>Xenograft Model Antitumor Assays</subject><issn>0021-9738</issn><issn>1558-8238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><recordid>eNqN0l2L1DAUBuAgijuuXvgHpCAIi3Q9aZo0vRGWsurI4oJftyFNTzqRthmadNV_b9bRYQfmYulFS_ucl3D6EvKcwjmlVfHmY7OmTEAtH5AV5VzmsmDyIVkBFDSvKyZPyJMQfgDQsuTlY3LCWFUAcFiR9afc6G6Ds5uyZTtjvww6Oj9lI3ZORwyZ7vQ2uhvMZt05P2NwIerJYJYm-sH5dtAh-lE_JY-sHgI--3c_Jd_eXX5tPuRX1-_XzcVVbgStY25pXaCWtKwEFYUGzaypeMcs6Lrk0ErDbYutkJRXXSko7Si0YAAqWdPaIjslb3e526VNhzQ4xVkPaju7Uc-_lddOHX6Z3Eb1_kZVNS95zVPAy11ArwdUbrI-MTO6YNSFSNsrS8mqpPIjqscJU6af0Lr0-sCfH_Hp6nB05ujA2cFAMhF_xV4vIaj1l8_3t9ffD-2rO3aDeoib4Ifl9q-Go6Fm9iHMaPc7pKBue6X2vUr2xd2l7-X_IiXwegd-YuttMA5TRfYMAIRglEqRnoAlLe-vGxf_VrLxyxTZH9OY5cg</recordid><startdate>20210315</startdate><enddate>20210315</enddate><creator>Osuka, Satoru</creator><creator>Zhu, Dan</creator><creator>Zhang, Zhaobin</creator><creator>Li, Chaoxi</creator><creator>Stackhouse, Christian T.</creator><creator>Sampetrean, Oltea</creator><creator>Olson, Jeffrey J.</creator><creator>Gillespie, G. Yancey</creator><creator>Saya, Hideyuki</creator><creator>Willey, Christopher D.</creator><creator>Van Meir, Erwin G.</creator><general>Amer Soc Clinical Investigation Inc</general><general>American Society for Clinical Investigation</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9968-681X</orcidid><orcidid>https://orcid.org/0000-0001-5783-1049</orcidid><orcidid>https://orcid.org/0000-0001-6436-9542</orcidid><orcidid>https://orcid.org/0000-0003-2186-2112</orcidid></search><sort><creationdate>20210315</creationdate><title>N-cadherin upregulation mediates adaptive radioresistance in glioblastoma</title><author>Osuka, Satoru ; Zhu, Dan ; Zhang, Zhaobin ; Li, Chaoxi ; Stackhouse, Christian T. ; Sampetrean, Oltea ; Olson, Jeffrey J. ; Gillespie, G. Yancey ; Saya, Hideyuki ; Willey, Christopher D. ; Van Meir, Erwin G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c619t-f192ea81476162a0a3fc75d3f0a9450b8c5fbeb68157d4611d10b0c0078919fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptation, Physiological</topic><topic>Animals</topic><topic>Antigens, CD - genetics</topic><topic>Antigens, CD - metabolism</topic><topic>Apoptosis</topic><topic>Brain Neoplasms - metabolism</topic><topic>Brain Neoplasms - pathology</topic><topic>Brain Neoplasms - radiotherapy</topic><topic>Cadherins</topic><topic>Cadherins - antagonists & inhibitors</topic><topic>Cadherins - genetics</topic><topic>Cadherins - metabolism</topic><topic>Care and treatment</topic><topic>Cell Adhesion</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation</topic><topic>Clusterin - antagonists & inhibitors</topic><topic>Clusterin - genetics</topic><topic>Clusterin - metabolism</topic><topic>Development and progression</topic><topic>Female</topic><topic>Gene Knockout Techniques</topic><topic>Glioblastoma - metabolism</topic><topic>Glioblastoma - pathology</topic><topic>Glioblastoma - radiotherapy</topic><topic>Glioblastoma multiforme</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Insulin-like growth factor 1</topic><topic>Life Sciences & Biomedicine</topic><topic>Medicine, Research & Experimental</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Mice, Nude</topic><topic>Neoplastic Stem Cells - metabolism</topic><topic>Neoplastic Stem Cells - pathology</topic><topic>Neoplastic Stem Cells - radiation effects</topic><topic>Physiological aspects</topic><topic>Radiation Tolerance - genetics</topic><topic>Radiation Tolerance - physiology</topic><topic>Radiotherapy</topic><topic>Research & Experimental Medicine</topic><topic>Science & Technology</topic><topic>Up-Regulation</topic><topic>Wnt Signaling Pathway</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Osuka, Satoru</creatorcontrib><creatorcontrib>Zhu, Dan</creatorcontrib><creatorcontrib>Zhang, Zhaobin</creatorcontrib><creatorcontrib>Li, Chaoxi</creatorcontrib><creatorcontrib>Stackhouse, Christian T.</creatorcontrib><creatorcontrib>Sampetrean, Oltea</creatorcontrib><creatorcontrib>Olson, Jeffrey J.</creatorcontrib><creatorcontrib>Gillespie, G. Yancey</creatorcontrib><creatorcontrib>Saya, Hideyuki</creatorcontrib><creatorcontrib>Willey, Christopher D.</creatorcontrib><creatorcontrib>Van Meir, Erwin G.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of clinical investigation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Osuka, Satoru</au><au>Zhu, Dan</au><au>Zhang, Zhaobin</au><au>Li, Chaoxi</au><au>Stackhouse, Christian T.</au><au>Sampetrean, Oltea</au><au>Olson, Jeffrey J.</au><au>Gillespie, G. Yancey</au><au>Saya, Hideyuki</au><au>Willey, Christopher D.</au><au>Van Meir, Erwin G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>N-cadherin upregulation mediates adaptive radioresistance in glioblastoma</atitle><jtitle>The Journal of clinical investigation</jtitle><stitle>J CLIN INVEST</stitle><addtitle>J Clin Invest</addtitle><date>2021-03-15</date><risdate>2021</risdate><volume>131</volume><issue>6</issue><artnum>136098</artnum><issn>0021-9738</issn><eissn>1558-8238</eissn><abstract>Glioblastoma (GBM) is composed of heterogeneous tumor cell populations, including those with stem cell properties, termed glioma stem cells (GSCs). GSCs are innately less radiation sensitive than the tumor bulk and are believed to drive GBM formation and recurrence after repeated irradiation. However, it is unclear how GSCs adapt to escape the toxicity of repeated irradiation used in clinical practice. To identify important mediators of adaptive radioresistance in GBM, we generated radioresistant human and mouse GSCs by exposing them to repeat cycles of irradiation. Surviving subpopulations acquired strong radioresistance in vivo, which was accompanied by a reduction in cell proliferation and an increase in cell-cell adhesion and N-cadherin expression. Increasing N-cadherin expression rendered parental GSCs radioresistant, reduced their proliferation, and increased their stemness and intercellular adhesive properties. Conversely, radioresistant GSCs lost their acquired phenotypes upon CRISPR/Cas9-mediated knockout of N-cadherin. Mechanistically, elevated N-cadherin expression resulted in the accumulation of ?-catenin at the cell surface, which suppressed Wnt/?-catenin proliferative signaling, reduced neural differentiation, and protected against apoptosis through Clusterin secretion. N-cadherin upregulation was induced by radiation-induced IGF1 secretion, and the radiation resistance phenotype could be reverted with picropodophyllin, a clinically applicable blood-brain-barrier permeable IGF1 receptor inhibitor, supporting clinical translation.</abstract><cop>ANN ARBOR</cop><pub>Amer Soc Clinical Investigation Inc</pub><pmid>33720050</pmid><doi>10.1172/JCI136098</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-9968-681X</orcidid><orcidid>https://orcid.org/0000-0001-5783-1049</orcidid><orcidid>https://orcid.org/0000-0001-6436-9542</orcidid><orcidid>https://orcid.org/0000-0003-2186-2112</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9738 |
ispartof | The Journal of clinical investigation, 2021-03, Vol.131 (6), Article 136098 |
issn | 0021-9738 1558-8238 |
language | eng |
recordid | cdi_gale_infotracmisc_A655844837 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central; Alma/SFX Local Collection |
subjects | Adaptation, Physiological Animals Antigens, CD - genetics Antigens, CD - metabolism Apoptosis Brain Neoplasms - metabolism Brain Neoplasms - pathology Brain Neoplasms - radiotherapy Cadherins Cadherins - antagonists & inhibitors Cadherins - genetics Cadherins - metabolism Care and treatment Cell Adhesion Cell Line, Tumor Cell Proliferation Clusterin - antagonists & inhibitors Clusterin - genetics Clusterin - metabolism Development and progression Female Gene Knockout Techniques Glioblastoma - metabolism Glioblastoma - pathology Glioblastoma - radiotherapy Glioblastoma multiforme Health aspects Humans Insulin-like growth factor 1 Life Sciences & Biomedicine Medicine, Research & Experimental Mice Mice, Inbred C57BL Mice, Knockout Mice, Nude Neoplastic Stem Cells - metabolism Neoplastic Stem Cells - pathology Neoplastic Stem Cells - radiation effects Physiological aspects Radiation Tolerance - genetics Radiation Tolerance - physiology Radiotherapy Research & Experimental Medicine Science & Technology Up-Regulation Wnt Signaling Pathway Xenograft Model Antitumor Assays |
title | N-cadherin upregulation mediates adaptive radioresistance in glioblastoma |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T07%3A47%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=N-cadherin%20upregulation%20mediates%20adaptive%20radioresistance%20in%20glioblastoma&rft.jtitle=The%20Journal%20of%20clinical%20investigation&rft.au=Osuka,%20Satoru&rft.date=2021-03-15&rft.volume=131&rft.issue=6&rft.artnum=136098&rft.issn=0021-9738&rft.eissn=1558-8238&rft_id=info:doi/10.1172/JCI136098&rft_dat=%3Cgale_cross%3EA655844837%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/33720050&rft_galeid=A655844837&rfr_iscdi=true |