N-cadherin upregulation mediates adaptive radioresistance in glioblastoma

Glioblastoma (GBM) is composed of heterogeneous tumor cell populations, including those with stem cell properties, termed glioma stem cells (GSCs). GSCs are innately less radiation sensitive than the tumor bulk and are believed to drive GBM formation and recurrence after repeated irradiation. Howeve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of clinical investigation 2021-03, Vol.131 (6), Article 136098
Hauptverfasser: Osuka, Satoru, Zhu, Dan, Zhang, Zhaobin, Li, Chaoxi, Stackhouse, Christian T., Sampetrean, Oltea, Olson, Jeffrey J., Gillespie, G. Yancey, Saya, Hideyuki, Willey, Christopher D., Van Meir, Erwin G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title The Journal of clinical investigation
container_volume 131
creator Osuka, Satoru
Zhu, Dan
Zhang, Zhaobin
Li, Chaoxi
Stackhouse, Christian T.
Sampetrean, Oltea
Olson, Jeffrey J.
Gillespie, G. Yancey
Saya, Hideyuki
Willey, Christopher D.
Van Meir, Erwin G.
description Glioblastoma (GBM) is composed of heterogeneous tumor cell populations, including those with stem cell properties, termed glioma stem cells (GSCs). GSCs are innately less radiation sensitive than the tumor bulk and are believed to drive GBM formation and recurrence after repeated irradiation. However, it is unclear how GSCs adapt to escape the toxicity of repeated irradiation used in clinical practice. To identify important mediators of adaptive radioresistance in GBM, we generated radioresistant human and mouse GSCs by exposing them to repeat cycles of irradiation. Surviving subpopulations acquired strong radioresistance in vivo, which was accompanied by a reduction in cell proliferation and an increase in cell-cell adhesion and N-cadherin expression. Increasing N-cadherin expression rendered parental GSCs radioresistant, reduced their proliferation, and increased their stemness and intercellular adhesive properties. Conversely, radioresistant GSCs lost their acquired phenotypes upon CRISPR/Cas9-mediated knockout of N-cadherin. Mechanistically, elevated N-cadherin expression resulted in the accumulation of ?-catenin at the cell surface, which suppressed Wnt/?-catenin proliferative signaling, reduced neural differentiation, and protected against apoptosis through Clusterin secretion. N-cadherin upregulation was induced by radiation-induced IGF1 secretion, and the radiation resistance phenotype could be reverted with picropodophyllin, a clinically applicable blood-brain-barrier permeable IGF1 receptor inhibitor, supporting clinical translation.
doi_str_mv 10.1172/JCI136098
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracmisc_A655844837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A655844837</galeid><sourcerecordid>A655844837</sourcerecordid><originalsourceid>FETCH-LOGICAL-c619t-f192ea81476162a0a3fc75d3f0a9450b8c5fbeb68157d4611d10b0c0078919fe3</originalsourceid><addsrcrecordid>eNqN0l2L1DAUBuAgijuuXvgHpCAIi3Q9aZo0vRGWsurI4oJftyFNTzqRthmadNV_b9bRYQfmYulFS_ucl3D6EvKcwjmlVfHmY7OmTEAtH5AV5VzmsmDyIVkBFDSvKyZPyJMQfgDQsuTlY3LCWFUAcFiR9afc6G6Ds5uyZTtjvww6Oj9lI3ZORwyZ7vQ2uhvMZt05P2NwIerJYJYm-sH5dtAh-lE_JY-sHgI--3c_Jd_eXX5tPuRX1-_XzcVVbgStY25pXaCWtKwEFYUGzaypeMcs6Lrk0ErDbYutkJRXXSko7Si0YAAqWdPaIjslb3e526VNhzQ4xVkPaju7Uc-_lddOHX6Z3Eb1_kZVNS95zVPAy11ArwdUbrI-MTO6YNSFSNsrS8mqpPIjqscJU6af0Lr0-sCfH_Hp6nB05ujA2cFAMhF_xV4vIaj1l8_3t9ffD-2rO3aDeoib4Ifl9q-Go6Fm9iHMaPc7pKBue6X2vUr2xd2l7-X_IiXwegd-YuttMA5TRfYMAIRglEqRnoAlLe-vGxf_VrLxyxTZH9OY5cg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>N-cadherin upregulation mediates adaptive radioresistance in glioblastoma</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Osuka, Satoru ; Zhu, Dan ; Zhang, Zhaobin ; Li, Chaoxi ; Stackhouse, Christian T. ; Sampetrean, Oltea ; Olson, Jeffrey J. ; Gillespie, G. Yancey ; Saya, Hideyuki ; Willey, Christopher D. ; Van Meir, Erwin G.</creator><creatorcontrib>Osuka, Satoru ; Zhu, Dan ; Zhang, Zhaobin ; Li, Chaoxi ; Stackhouse, Christian T. ; Sampetrean, Oltea ; Olson, Jeffrey J. ; Gillespie, G. Yancey ; Saya, Hideyuki ; Willey, Christopher D. ; Van Meir, Erwin G.</creatorcontrib><description>Glioblastoma (GBM) is composed of heterogeneous tumor cell populations, including those with stem cell properties, termed glioma stem cells (GSCs). GSCs are innately less radiation sensitive than the tumor bulk and are believed to drive GBM formation and recurrence after repeated irradiation. However, it is unclear how GSCs adapt to escape the toxicity of repeated irradiation used in clinical practice. To identify important mediators of adaptive radioresistance in GBM, we generated radioresistant human and mouse GSCs by exposing them to repeat cycles of irradiation. Surviving subpopulations acquired strong radioresistance in vivo, which was accompanied by a reduction in cell proliferation and an increase in cell-cell adhesion and N-cadherin expression. Increasing N-cadherin expression rendered parental GSCs radioresistant, reduced their proliferation, and increased their stemness and intercellular adhesive properties. Conversely, radioresistant GSCs lost their acquired phenotypes upon CRISPR/Cas9-mediated knockout of N-cadherin. Mechanistically, elevated N-cadherin expression resulted in the accumulation of ?-catenin at the cell surface, which suppressed Wnt/?-catenin proliferative signaling, reduced neural differentiation, and protected against apoptosis through Clusterin secretion. N-cadherin upregulation was induced by radiation-induced IGF1 secretion, and the radiation resistance phenotype could be reverted with picropodophyllin, a clinically applicable blood-brain-barrier permeable IGF1 receptor inhibitor, supporting clinical translation.</description><identifier>ISSN: 0021-9738</identifier><identifier>EISSN: 1558-8238</identifier><identifier>DOI: 10.1172/JCI136098</identifier><identifier>PMID: 33720050</identifier><language>eng</language><publisher>ANN ARBOR: Amer Soc Clinical Investigation Inc</publisher><subject><![CDATA[Adaptation, Physiological ; Animals ; Antigens, CD - genetics ; Antigens, CD - metabolism ; Apoptosis ; Brain Neoplasms - metabolism ; Brain Neoplasms - pathology ; Brain Neoplasms - radiotherapy ; Cadherins ; Cadherins - antagonists & inhibitors ; Cadherins - genetics ; Cadherins - metabolism ; Care and treatment ; Cell Adhesion ; Cell Line, Tumor ; Cell Proliferation ; Clusterin - antagonists & inhibitors ; Clusterin - genetics ; Clusterin - metabolism ; Development and progression ; Female ; Gene Knockout Techniques ; Glioblastoma - metabolism ; Glioblastoma - pathology ; Glioblastoma - radiotherapy ; Glioblastoma multiforme ; Health aspects ; Humans ; Insulin-like growth factor 1 ; Life Sciences & Biomedicine ; Medicine, Research & Experimental ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Mice, Nude ; Neoplastic Stem Cells - metabolism ; Neoplastic Stem Cells - pathology ; Neoplastic Stem Cells - radiation effects ; Physiological aspects ; Radiation Tolerance - genetics ; Radiation Tolerance - physiology ; Radiotherapy ; Research & Experimental Medicine ; Science & Technology ; Up-Regulation ; Wnt Signaling Pathway ; Xenograft Model Antitumor Assays]]></subject><ispartof>The Journal of clinical investigation, 2021-03, Vol.131 (6), Article 136098</ispartof><rights>COPYRIGHT 2021 American Society for Clinical Investigation</rights><rights>2021 American Society for Clinical Investigation 2021 American Society for Clinical Investigation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>54</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000663118600003</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c619t-f192ea81476162a0a3fc75d3f0a9450b8c5fbeb68157d4611d10b0c0078919fe3</citedby><cites>FETCH-LOGICAL-c619t-f192ea81476162a0a3fc75d3f0a9450b8c5fbeb68157d4611d10b0c0078919fe3</cites><orcidid>0000-0002-9968-681X ; 0000-0001-5783-1049 ; 0000-0001-6436-9542 ; 0000-0003-2186-2112</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7954595/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7954595/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,729,782,786,887,27933,27934,39267,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33720050$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Osuka, Satoru</creatorcontrib><creatorcontrib>Zhu, Dan</creatorcontrib><creatorcontrib>Zhang, Zhaobin</creatorcontrib><creatorcontrib>Li, Chaoxi</creatorcontrib><creatorcontrib>Stackhouse, Christian T.</creatorcontrib><creatorcontrib>Sampetrean, Oltea</creatorcontrib><creatorcontrib>Olson, Jeffrey J.</creatorcontrib><creatorcontrib>Gillespie, G. Yancey</creatorcontrib><creatorcontrib>Saya, Hideyuki</creatorcontrib><creatorcontrib>Willey, Christopher D.</creatorcontrib><creatorcontrib>Van Meir, Erwin G.</creatorcontrib><title>N-cadherin upregulation mediates adaptive radioresistance in glioblastoma</title><title>The Journal of clinical investigation</title><addtitle>J CLIN INVEST</addtitle><addtitle>J Clin Invest</addtitle><description>Glioblastoma (GBM) is composed of heterogeneous tumor cell populations, including those with stem cell properties, termed glioma stem cells (GSCs). GSCs are innately less radiation sensitive than the tumor bulk and are believed to drive GBM formation and recurrence after repeated irradiation. However, it is unclear how GSCs adapt to escape the toxicity of repeated irradiation used in clinical practice. To identify important mediators of adaptive radioresistance in GBM, we generated radioresistant human and mouse GSCs by exposing them to repeat cycles of irradiation. Surviving subpopulations acquired strong radioresistance in vivo, which was accompanied by a reduction in cell proliferation and an increase in cell-cell adhesion and N-cadherin expression. Increasing N-cadherin expression rendered parental GSCs radioresistant, reduced their proliferation, and increased their stemness and intercellular adhesive properties. Conversely, radioresistant GSCs lost their acquired phenotypes upon CRISPR/Cas9-mediated knockout of N-cadherin. Mechanistically, elevated N-cadherin expression resulted in the accumulation of ?-catenin at the cell surface, which suppressed Wnt/?-catenin proliferative signaling, reduced neural differentiation, and protected against apoptosis through Clusterin secretion. N-cadherin upregulation was induced by radiation-induced IGF1 secretion, and the radiation resistance phenotype could be reverted with picropodophyllin, a clinically applicable blood-brain-barrier permeable IGF1 receptor inhibitor, supporting clinical translation.</description><subject>Adaptation, Physiological</subject><subject>Animals</subject><subject>Antigens, CD - genetics</subject><subject>Antigens, CD - metabolism</subject><subject>Apoptosis</subject><subject>Brain Neoplasms - metabolism</subject><subject>Brain Neoplasms - pathology</subject><subject>Brain Neoplasms - radiotherapy</subject><subject>Cadherins</subject><subject>Cadherins - antagonists &amp; inhibitors</subject><subject>Cadherins - genetics</subject><subject>Cadherins - metabolism</subject><subject>Care and treatment</subject><subject>Cell Adhesion</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation</subject><subject>Clusterin - antagonists &amp; inhibitors</subject><subject>Clusterin - genetics</subject><subject>Clusterin - metabolism</subject><subject>Development and progression</subject><subject>Female</subject><subject>Gene Knockout Techniques</subject><subject>Glioblastoma - metabolism</subject><subject>Glioblastoma - pathology</subject><subject>Glioblastoma - radiotherapy</subject><subject>Glioblastoma multiforme</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Insulin-like growth factor 1</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Medicine, Research &amp; Experimental</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Mice, Nude</subject><subject>Neoplastic Stem Cells - metabolism</subject><subject>Neoplastic Stem Cells - pathology</subject><subject>Neoplastic Stem Cells - radiation effects</subject><subject>Physiological aspects</subject><subject>Radiation Tolerance - genetics</subject><subject>Radiation Tolerance - physiology</subject><subject>Radiotherapy</subject><subject>Research &amp; Experimental Medicine</subject><subject>Science &amp; Technology</subject><subject>Up-Regulation</subject><subject>Wnt Signaling Pathway</subject><subject>Xenograft Model Antitumor Assays</subject><issn>0021-9738</issn><issn>1558-8238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><recordid>eNqN0l2L1DAUBuAgijuuXvgHpCAIi3Q9aZo0vRGWsurI4oJftyFNTzqRthmadNV_b9bRYQfmYulFS_ucl3D6EvKcwjmlVfHmY7OmTEAtH5AV5VzmsmDyIVkBFDSvKyZPyJMQfgDQsuTlY3LCWFUAcFiR9afc6G6Ds5uyZTtjvww6Oj9lI3ZORwyZ7vQ2uhvMZt05P2NwIerJYJYm-sH5dtAh-lE_JY-sHgI--3c_Jd_eXX5tPuRX1-_XzcVVbgStY25pXaCWtKwEFYUGzaypeMcs6Lrk0ErDbYutkJRXXSko7Si0YAAqWdPaIjslb3e526VNhzQ4xVkPaju7Uc-_lddOHX6Z3Eb1_kZVNS95zVPAy11ArwdUbrI-MTO6YNSFSNsrS8mqpPIjqscJU6af0Lr0-sCfH_Hp6nB05ujA2cFAMhF_xV4vIaj1l8_3t9ffD-2rO3aDeoib4Ifl9q-Go6Fm9iHMaPc7pKBue6X2vUr2xd2l7-X_IiXwegd-YuttMA5TRfYMAIRglEqRnoAlLe-vGxf_VrLxyxTZH9OY5cg</recordid><startdate>20210315</startdate><enddate>20210315</enddate><creator>Osuka, Satoru</creator><creator>Zhu, Dan</creator><creator>Zhang, Zhaobin</creator><creator>Li, Chaoxi</creator><creator>Stackhouse, Christian T.</creator><creator>Sampetrean, Oltea</creator><creator>Olson, Jeffrey J.</creator><creator>Gillespie, G. Yancey</creator><creator>Saya, Hideyuki</creator><creator>Willey, Christopher D.</creator><creator>Van Meir, Erwin G.</creator><general>Amer Soc Clinical Investigation Inc</general><general>American Society for Clinical Investigation</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9968-681X</orcidid><orcidid>https://orcid.org/0000-0001-5783-1049</orcidid><orcidid>https://orcid.org/0000-0001-6436-9542</orcidid><orcidid>https://orcid.org/0000-0003-2186-2112</orcidid></search><sort><creationdate>20210315</creationdate><title>N-cadherin upregulation mediates adaptive radioresistance in glioblastoma</title><author>Osuka, Satoru ; Zhu, Dan ; Zhang, Zhaobin ; Li, Chaoxi ; Stackhouse, Christian T. ; Sampetrean, Oltea ; Olson, Jeffrey J. ; Gillespie, G. Yancey ; Saya, Hideyuki ; Willey, Christopher D. ; Van Meir, Erwin G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c619t-f192ea81476162a0a3fc75d3f0a9450b8c5fbeb68157d4611d10b0c0078919fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptation, Physiological</topic><topic>Animals</topic><topic>Antigens, CD - genetics</topic><topic>Antigens, CD - metabolism</topic><topic>Apoptosis</topic><topic>Brain Neoplasms - metabolism</topic><topic>Brain Neoplasms - pathology</topic><topic>Brain Neoplasms - radiotherapy</topic><topic>Cadherins</topic><topic>Cadherins - antagonists &amp; inhibitors</topic><topic>Cadherins - genetics</topic><topic>Cadherins - metabolism</topic><topic>Care and treatment</topic><topic>Cell Adhesion</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation</topic><topic>Clusterin - antagonists &amp; inhibitors</topic><topic>Clusterin - genetics</topic><topic>Clusterin - metabolism</topic><topic>Development and progression</topic><topic>Female</topic><topic>Gene Knockout Techniques</topic><topic>Glioblastoma - metabolism</topic><topic>Glioblastoma - pathology</topic><topic>Glioblastoma - radiotherapy</topic><topic>Glioblastoma multiforme</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Insulin-like growth factor 1</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Medicine, Research &amp; Experimental</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Mice, Nude</topic><topic>Neoplastic Stem Cells - metabolism</topic><topic>Neoplastic Stem Cells - pathology</topic><topic>Neoplastic Stem Cells - radiation effects</topic><topic>Physiological aspects</topic><topic>Radiation Tolerance - genetics</topic><topic>Radiation Tolerance - physiology</topic><topic>Radiotherapy</topic><topic>Research &amp; Experimental Medicine</topic><topic>Science &amp; Technology</topic><topic>Up-Regulation</topic><topic>Wnt Signaling Pathway</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Osuka, Satoru</creatorcontrib><creatorcontrib>Zhu, Dan</creatorcontrib><creatorcontrib>Zhang, Zhaobin</creatorcontrib><creatorcontrib>Li, Chaoxi</creatorcontrib><creatorcontrib>Stackhouse, Christian T.</creatorcontrib><creatorcontrib>Sampetrean, Oltea</creatorcontrib><creatorcontrib>Olson, Jeffrey J.</creatorcontrib><creatorcontrib>Gillespie, G. Yancey</creatorcontrib><creatorcontrib>Saya, Hideyuki</creatorcontrib><creatorcontrib>Willey, Christopher D.</creatorcontrib><creatorcontrib>Van Meir, Erwin G.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of clinical investigation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Osuka, Satoru</au><au>Zhu, Dan</au><au>Zhang, Zhaobin</au><au>Li, Chaoxi</au><au>Stackhouse, Christian T.</au><au>Sampetrean, Oltea</au><au>Olson, Jeffrey J.</au><au>Gillespie, G. Yancey</au><au>Saya, Hideyuki</au><au>Willey, Christopher D.</au><au>Van Meir, Erwin G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>N-cadherin upregulation mediates adaptive radioresistance in glioblastoma</atitle><jtitle>The Journal of clinical investigation</jtitle><stitle>J CLIN INVEST</stitle><addtitle>J Clin Invest</addtitle><date>2021-03-15</date><risdate>2021</risdate><volume>131</volume><issue>6</issue><artnum>136098</artnum><issn>0021-9738</issn><eissn>1558-8238</eissn><abstract>Glioblastoma (GBM) is composed of heterogeneous tumor cell populations, including those with stem cell properties, termed glioma stem cells (GSCs). GSCs are innately less radiation sensitive than the tumor bulk and are believed to drive GBM formation and recurrence after repeated irradiation. However, it is unclear how GSCs adapt to escape the toxicity of repeated irradiation used in clinical practice. To identify important mediators of adaptive radioresistance in GBM, we generated radioresistant human and mouse GSCs by exposing them to repeat cycles of irradiation. Surviving subpopulations acquired strong radioresistance in vivo, which was accompanied by a reduction in cell proliferation and an increase in cell-cell adhesion and N-cadherin expression. Increasing N-cadherin expression rendered parental GSCs radioresistant, reduced their proliferation, and increased their stemness and intercellular adhesive properties. Conversely, radioresistant GSCs lost their acquired phenotypes upon CRISPR/Cas9-mediated knockout of N-cadherin. Mechanistically, elevated N-cadherin expression resulted in the accumulation of ?-catenin at the cell surface, which suppressed Wnt/?-catenin proliferative signaling, reduced neural differentiation, and protected against apoptosis through Clusterin secretion. N-cadherin upregulation was induced by radiation-induced IGF1 secretion, and the radiation resistance phenotype could be reverted with picropodophyllin, a clinically applicable blood-brain-barrier permeable IGF1 receptor inhibitor, supporting clinical translation.</abstract><cop>ANN ARBOR</cop><pub>Amer Soc Clinical Investigation Inc</pub><pmid>33720050</pmid><doi>10.1172/JCI136098</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-9968-681X</orcidid><orcidid>https://orcid.org/0000-0001-5783-1049</orcidid><orcidid>https://orcid.org/0000-0001-6436-9542</orcidid><orcidid>https://orcid.org/0000-0003-2186-2112</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9738
ispartof The Journal of clinical investigation, 2021-03, Vol.131 (6), Article 136098
issn 0021-9738
1558-8238
language eng
recordid cdi_gale_infotracmisc_A655844837
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central; Alma/SFX Local Collection
subjects Adaptation, Physiological
Animals
Antigens, CD - genetics
Antigens, CD - metabolism
Apoptosis
Brain Neoplasms - metabolism
Brain Neoplasms - pathology
Brain Neoplasms - radiotherapy
Cadherins
Cadherins - antagonists & inhibitors
Cadherins - genetics
Cadherins - metabolism
Care and treatment
Cell Adhesion
Cell Line, Tumor
Cell Proliferation
Clusterin - antagonists & inhibitors
Clusterin - genetics
Clusterin - metabolism
Development and progression
Female
Gene Knockout Techniques
Glioblastoma - metabolism
Glioblastoma - pathology
Glioblastoma - radiotherapy
Glioblastoma multiforme
Health aspects
Humans
Insulin-like growth factor 1
Life Sciences & Biomedicine
Medicine, Research & Experimental
Mice
Mice, Inbred C57BL
Mice, Knockout
Mice, Nude
Neoplastic Stem Cells - metabolism
Neoplastic Stem Cells - pathology
Neoplastic Stem Cells - radiation effects
Physiological aspects
Radiation Tolerance - genetics
Radiation Tolerance - physiology
Radiotherapy
Research & Experimental Medicine
Science & Technology
Up-Regulation
Wnt Signaling Pathway
Xenograft Model Antitumor Assays
title N-cadherin upregulation mediates adaptive radioresistance in glioblastoma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T07%3A47%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=N-cadherin%20upregulation%20mediates%20adaptive%20radioresistance%20in%20glioblastoma&rft.jtitle=The%20Journal%20of%20clinical%20investigation&rft.au=Osuka,%20Satoru&rft.date=2021-03-15&rft.volume=131&rft.issue=6&rft.artnum=136098&rft.issn=0021-9738&rft.eissn=1558-8238&rft_id=info:doi/10.1172/JCI136098&rft_dat=%3Cgale_cross%3EA655844837%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/33720050&rft_galeid=A655844837&rfr_iscdi=true