Disruption of protease A and B orthologous genes in the basidiomycetous yeast Pseudozyma antarctica GB-4(0) yields a stable extracellular biodegradable plastic-degrading enzyme

The yeast Pseudozyma antarctica (currently designated Moesziomyces antarcticus) secretes a xylose-induced biodegradable plastic-degrading enzyme (PaE). To suppress degradation of PaE during production and storage, we targeted the inhibition of proteolytic enzyme activity in P. antarctica. Proteases...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2021-03, Vol.16 (3), p.e0247462-e0247462, Article 0247462
Hauptverfasser: Omae, Natsuki, Sameshima-Yamashita, Yuka, Ushimaru, Kazunori, Koike, Hideaki, Kitamoto, Hiroko, Morita, Tomotake
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0247462
container_issue 3
container_start_page e0247462
container_title PloS one
container_volume 16
creator Omae, Natsuki
Sameshima-Yamashita, Yuka
Ushimaru, Kazunori
Koike, Hideaki
Kitamoto, Hiroko
Morita, Tomotake
description The yeast Pseudozyma antarctica (currently designated Moesziomyces antarcticus) secretes a xylose-induced biodegradable plastic-degrading enzyme (PaE). To suppress degradation of PaE during production and storage, we targeted the inhibition of proteolytic enzyme activity in P. antarctica. Proteases A and B act as upper regulators in the proteolytic network of the model yeast, Saccharomyces cerevisiae. We searched for orthologous genes encoding proteases A and B in the genome of P. antarctica GB-4(0) based on the predicted amino acid sequences. We found two gene candidates, PaPRO1 and PaPRO2, with conserved catalytically important domains and signal peptides indicative of vacuolar protease function. We then prepared gene-deletion mutants of strain GB-4(0), Delta PaPRO1 and Delta PaPRO2, and evaluated PaE stability in culture by immunoblotting analysis. Both mutants exhibited sufficient production of PaE without degradation fragments, while the parent strain exhibited the degradation fragments. Therefore, we concluded that the protease A and B orthologous genes are related to the degradation of PaE. To produce a large quantity of PaE, we made a PaPRO2 deletion mutant of a PaE-overexpression strain named XG8 by introducing a PaE high-production cassette into the strain GB-4(0). The Delta PaPRO2 mutant of XG8 was able to produce PaE without the degradation fragments during large-scale cultivation in a 3-L jar fermenter for 3 days at 30 degrees C. After terminating the agitation, the PaE activity in the XG8 Delta PaPRO2 mutant culture was maintained for the subsequent 48 h incubation at 25 degrees C regardless of remaining cells, while activity in the XG8 control was reduced to 55.1%. The gene-deleted mutants will be useful for the development of industrial processes of PaE production and storage.
doi_str_mv 10.1371/journal.pone.0247462
format Article
fullrecord <record><control><sourceid>gale_webof</sourceid><recordid>TN_cdi_gale_infotracmisc_A655343507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A655343507</galeid><doaj_id>oai_doaj_org_article_20aaad40a2524ea083b28581fdc89256</doaj_id><sourcerecordid>A655343507</sourcerecordid><originalsourceid>FETCH-LOGICAL-c593t-83279d9a05192e70078728026f39556f2859b257bb28e7cd979dc22c8dbdd8b43</originalsourceid><addsrcrecordid>eNqNUsFu1DAQjRCIlsIfILDEpQjt4thx4lyQ2gVKpUpwgLM1sSdbV1l7sR1g-So-EWd3W7WoB5JDopn3nj1vXlE8L-m85E359sqPwcEwX3uHc8qqpqrZg-KwbDmb1Yzyh7f-D4onMV5RKris68fFAecNp7StDos_720M4zpZ74jvyTr4hBCRnBBwhpwSH9KlH_zSj5Es0WEk1pF0iaSDaI31q43GNDU3mZbIl4ij8b83K8j8BEEnq4Gcnc6qY_qabCwOJhIgMUE3IMFfKYDGYRgHCKSz3uAygNn21kPWs3q2K1m3JOiyLj4tHvUwRHy2_x4V3z5--Lr4NLv4fHa-OLmYadHyNJOcNa1pgYqyZdhQ2siGScrqnrdC1D2Tou2YaLqOSWy0aTNaM6al6YyRXcWPipc73fXgo9qbHRUTlGVbeSUz4nyHMB6u1DrYFYSN8mDVtuDDUkHIIwyoGAUAU1FgglUIVPJ8rJBlb7Rsmaiz1rv9aWO3QqPRZWeGO6J3O85eqqX_oZq2zisVWeB4LxD89xFjUisbJ2vBYV7P9t6Sipq2GfrqH-j90-1RS8gDWNf7aVeTqDqpheAVF7TJqPk9qPwaXFmdk9nbXL9DqHYEHXyMAfubGUuqplxfX0ZNuVb7XGfai9v-3JCug5wBcgf4iZ3vo7boNN7AKKU1p7wSdHrqhU0wJX7hR5cy9c3_U_lfP7YX2Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2502193348</pqid></control><display><type>article</type><title>Disruption of protease A and B orthologous genes in the basidiomycetous yeast Pseudozyma antarctica GB-4(0) yields a stable extracellular biodegradable plastic-degrading enzyme</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Omae, Natsuki ; Sameshima-Yamashita, Yuka ; Ushimaru, Kazunori ; Koike, Hideaki ; Kitamoto, Hiroko ; Morita, Tomotake</creator><contributor>Hagiwara, Daisuke</contributor><creatorcontrib>Omae, Natsuki ; Sameshima-Yamashita, Yuka ; Ushimaru, Kazunori ; Koike, Hideaki ; Kitamoto, Hiroko ; Morita, Tomotake ; Hagiwara, Daisuke</creatorcontrib><description>The yeast Pseudozyma antarctica (currently designated Moesziomyces antarcticus) secretes a xylose-induced biodegradable plastic-degrading enzyme (PaE). To suppress degradation of PaE during production and storage, we targeted the inhibition of proteolytic enzyme activity in P. antarctica. Proteases A and B act as upper regulators in the proteolytic network of the model yeast, Saccharomyces cerevisiae. We searched for orthologous genes encoding proteases A and B in the genome of P. antarctica GB-4(0) based on the predicted amino acid sequences. We found two gene candidates, PaPRO1 and PaPRO2, with conserved catalytically important domains and signal peptides indicative of vacuolar protease function. We then prepared gene-deletion mutants of strain GB-4(0), Delta PaPRO1 and Delta PaPRO2, and evaluated PaE stability in culture by immunoblotting analysis. Both mutants exhibited sufficient production of PaE without degradation fragments, while the parent strain exhibited the degradation fragments. Therefore, we concluded that the protease A and B orthologous genes are related to the degradation of PaE. To produce a large quantity of PaE, we made a PaPRO2 deletion mutant of a PaE-overexpression strain named XG8 by introducing a PaE high-production cassette into the strain GB-4(0). The Delta PaPRO2 mutant of XG8 was able to produce PaE without the degradation fragments during large-scale cultivation in a 3-L jar fermenter for 3 days at 30 degrees C. After terminating the agitation, the PaE activity in the XG8 Delta PaPRO2 mutant culture was maintained for the subsequent 48 h incubation at 25 degrees C regardless of remaining cells, while activity in the XG8 control was reduced to 55.1%. The gene-deleted mutants will be useful for the development of industrial processes of PaE production and storage.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0247462</identifier><identifier>PMID: 33730094</identifier><language>eng</language><publisher>SAN FRANCISCO: Public Library Science</publisher><subject>Amino Acid Sequence - genetics ; Basidiomycota - enzymology ; Basidiomycota - genetics ; Basidiomycota - metabolism ; Biodegradability ; Biodegradable Plastics - metabolism ; Biodegradation ; Biology and Life Sciences ; Bioplastics ; Chemical properties ; Commercialization ; Deoxyribonucleic acid ; DNA ; DNA, Fungal - genetics ; Endopeptidases - genetics ; Endopeptidases - metabolism ; Environmental degradation ; Environmental science ; Enzymes ; Fungal Proteins - genetics ; Gene amplification ; Gene expression ; Genes ; Genetic aspects ; Genomes ; Multidisciplinary Sciences ; Peptide Hydrolases - genetics ; Peptide Hydrolases - metabolism ; Physical Sciences ; Plasmids ; Plastics ; Poly(L-lactide) ; Polycaprolactone ; Polyesters ; Polylactic acid ; Proteases ; Proteins ; Research and Analysis Methods ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Serine Endopeptidases - genetics ; Serine Endopeptidases - metabolism ; Synthesis ; Xylose - metabolism ; Yeast ; Yeasts</subject><ispartof>PloS one, 2021-03, Vol.16 (3), p.e0247462-e0247462, Article 0247462</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Omae et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Omae et al 2021 Omae et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>2</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000630345000006</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c593t-83279d9a05192e70078728026f39556f2859b257bb28e7cd979dc22c8dbdd8b43</citedby><cites>FETCH-LOGICAL-c593t-83279d9a05192e70078728026f39556f2859b257bb28e7cd979dc22c8dbdd8b43</cites><orcidid>0000-0001-6956-3096</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7968665/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7968665/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,2929,23870,27928,27929,53795,53797</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33730094$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Hagiwara, Daisuke</contributor><creatorcontrib>Omae, Natsuki</creatorcontrib><creatorcontrib>Sameshima-Yamashita, Yuka</creatorcontrib><creatorcontrib>Ushimaru, Kazunori</creatorcontrib><creatorcontrib>Koike, Hideaki</creatorcontrib><creatorcontrib>Kitamoto, Hiroko</creatorcontrib><creatorcontrib>Morita, Tomotake</creatorcontrib><title>Disruption of protease A and B orthologous genes in the basidiomycetous yeast Pseudozyma antarctica GB-4(0) yields a stable extracellular biodegradable plastic-degrading enzyme</title><title>PloS one</title><addtitle>PLOS ONE</addtitle><addtitle>PLoS One</addtitle><description>The yeast Pseudozyma antarctica (currently designated Moesziomyces antarcticus) secretes a xylose-induced biodegradable plastic-degrading enzyme (PaE). To suppress degradation of PaE during production and storage, we targeted the inhibition of proteolytic enzyme activity in P. antarctica. Proteases A and B act as upper regulators in the proteolytic network of the model yeast, Saccharomyces cerevisiae. We searched for orthologous genes encoding proteases A and B in the genome of P. antarctica GB-4(0) based on the predicted amino acid sequences. We found two gene candidates, PaPRO1 and PaPRO2, with conserved catalytically important domains and signal peptides indicative of vacuolar protease function. We then prepared gene-deletion mutants of strain GB-4(0), Delta PaPRO1 and Delta PaPRO2, and evaluated PaE stability in culture by immunoblotting analysis. Both mutants exhibited sufficient production of PaE without degradation fragments, while the parent strain exhibited the degradation fragments. Therefore, we concluded that the protease A and B orthologous genes are related to the degradation of PaE. To produce a large quantity of PaE, we made a PaPRO2 deletion mutant of a PaE-overexpression strain named XG8 by introducing a PaE high-production cassette into the strain GB-4(0). The Delta PaPRO2 mutant of XG8 was able to produce PaE without the degradation fragments during large-scale cultivation in a 3-L jar fermenter for 3 days at 30 degrees C. After terminating the agitation, the PaE activity in the XG8 Delta PaPRO2 mutant culture was maintained for the subsequent 48 h incubation at 25 degrees C regardless of remaining cells, while activity in the XG8 control was reduced to 55.1%. The gene-deleted mutants will be useful for the development of industrial processes of PaE production and storage.</description><subject>Amino Acid Sequence - genetics</subject><subject>Basidiomycota - enzymology</subject><subject>Basidiomycota - genetics</subject><subject>Basidiomycota - metabolism</subject><subject>Biodegradability</subject><subject>Biodegradable Plastics - metabolism</subject><subject>Biodegradation</subject><subject>Biology and Life Sciences</subject><subject>Bioplastics</subject><subject>Chemical properties</subject><subject>Commercialization</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA, Fungal - genetics</subject><subject>Endopeptidases - genetics</subject><subject>Endopeptidases - metabolism</subject><subject>Environmental degradation</subject><subject>Environmental science</subject><subject>Enzymes</subject><subject>Fungal Proteins - genetics</subject><subject>Gene amplification</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>Multidisciplinary Sciences</subject><subject>Peptide Hydrolases - genetics</subject><subject>Peptide Hydrolases - metabolism</subject><subject>Physical Sciences</subject><subject>Plasmids</subject><subject>Plastics</subject><subject>Poly(L-lactide)</subject><subject>Polycaprolactone</subject><subject>Polyesters</subject><subject>Polylactic acid</subject><subject>Proteases</subject><subject>Proteins</subject><subject>Research and Analysis Methods</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Serine Endopeptidases - genetics</subject><subject>Serine Endopeptidases - metabolism</subject><subject>Synthesis</subject><subject>Xylose - metabolism</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNUsFu1DAQjRCIlsIfILDEpQjt4thx4lyQ2gVKpUpwgLM1sSdbV1l7sR1g-So-EWd3W7WoB5JDopn3nj1vXlE8L-m85E359sqPwcEwX3uHc8qqpqrZg-KwbDmb1Yzyh7f-D4onMV5RKris68fFAecNp7StDos_720M4zpZ74jvyTr4hBCRnBBwhpwSH9KlH_zSj5Es0WEk1pF0iaSDaI31q43GNDU3mZbIl4ij8b83K8j8BEEnq4Gcnc6qY_qabCwOJhIgMUE3IMFfKYDGYRgHCKSz3uAygNn21kPWs3q2K1m3JOiyLj4tHvUwRHy2_x4V3z5--Lr4NLv4fHa-OLmYadHyNJOcNa1pgYqyZdhQ2siGScrqnrdC1D2Tou2YaLqOSWy0aTNaM6al6YyRXcWPipc73fXgo9qbHRUTlGVbeSUz4nyHMB6u1DrYFYSN8mDVtuDDUkHIIwyoGAUAU1FgglUIVPJ8rJBlb7Rsmaiz1rv9aWO3QqPRZWeGO6J3O85eqqX_oZq2zisVWeB4LxD89xFjUisbJ2vBYV7P9t6Sipq2GfrqH-j90-1RS8gDWNf7aVeTqDqpheAVF7TJqPk9qPwaXFmdk9nbXL9DqHYEHXyMAfubGUuqplxfX0ZNuVb7XGfai9v-3JCug5wBcgf4iZ3vo7boNN7AKKU1p7wSdHrqhU0wJX7hR5cy9c3_U_lfP7YX2Q</recordid><startdate>20210317</startdate><enddate>20210317</enddate><creator>Omae, Natsuki</creator><creator>Sameshima-Yamashita, Yuka</creator><creator>Ushimaru, Kazunori</creator><creator>Koike, Hideaki</creator><creator>Kitamoto, Hiroko</creator><creator>Morita, Tomotake</creator><general>Public Library Science</general><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6956-3096</orcidid></search><sort><creationdate>20210317</creationdate><title>Disruption of protease A and B orthologous genes in the basidiomycetous yeast Pseudozyma antarctica GB-4(0) yields a stable extracellular biodegradable plastic-degrading enzyme</title><author>Omae, Natsuki ; Sameshima-Yamashita, Yuka ; Ushimaru, Kazunori ; Koike, Hideaki ; Kitamoto, Hiroko ; Morita, Tomotake</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c593t-83279d9a05192e70078728026f39556f2859b257bb28e7cd979dc22c8dbdd8b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amino Acid Sequence - genetics</topic><topic>Basidiomycota - enzymology</topic><topic>Basidiomycota - genetics</topic><topic>Basidiomycota - metabolism</topic><topic>Biodegradability</topic><topic>Biodegradable Plastics - metabolism</topic><topic>Biodegradation</topic><topic>Biology and Life Sciences</topic><topic>Bioplastics</topic><topic>Chemical properties</topic><topic>Commercialization</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA, Fungal - genetics</topic><topic>Endopeptidases - genetics</topic><topic>Endopeptidases - metabolism</topic><topic>Environmental degradation</topic><topic>Environmental science</topic><topic>Enzymes</topic><topic>Fungal Proteins - genetics</topic><topic>Gene amplification</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>Multidisciplinary Sciences</topic><topic>Peptide Hydrolases - genetics</topic><topic>Peptide Hydrolases - metabolism</topic><topic>Physical Sciences</topic><topic>Plasmids</topic><topic>Plastics</topic><topic>Poly(L-lactide)</topic><topic>Polycaprolactone</topic><topic>Polyesters</topic><topic>Polylactic acid</topic><topic>Proteases</topic><topic>Proteins</topic><topic>Research and Analysis Methods</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Serine Endopeptidases - genetics</topic><topic>Serine Endopeptidases - metabolism</topic><topic>Synthesis</topic><topic>Xylose - metabolism</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Omae, Natsuki</creatorcontrib><creatorcontrib>Sameshima-Yamashita, Yuka</creatorcontrib><creatorcontrib>Ushimaru, Kazunori</creatorcontrib><creatorcontrib>Koike, Hideaki</creatorcontrib><creatorcontrib>Kitamoto, Hiroko</creatorcontrib><creatorcontrib>Morita, Tomotake</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Omae, Natsuki</au><au>Sameshima-Yamashita, Yuka</au><au>Ushimaru, Kazunori</au><au>Koike, Hideaki</au><au>Kitamoto, Hiroko</au><au>Morita, Tomotake</au><au>Hagiwara, Daisuke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disruption of protease A and B orthologous genes in the basidiomycetous yeast Pseudozyma antarctica GB-4(0) yields a stable extracellular biodegradable plastic-degrading enzyme</atitle><jtitle>PloS one</jtitle><stitle>PLOS ONE</stitle><addtitle>PLoS One</addtitle><date>2021-03-17</date><risdate>2021</risdate><volume>16</volume><issue>3</issue><spage>e0247462</spage><epage>e0247462</epage><pages>e0247462-e0247462</pages><artnum>0247462</artnum><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The yeast Pseudozyma antarctica (currently designated Moesziomyces antarcticus) secretes a xylose-induced biodegradable plastic-degrading enzyme (PaE). To suppress degradation of PaE during production and storage, we targeted the inhibition of proteolytic enzyme activity in P. antarctica. Proteases A and B act as upper regulators in the proteolytic network of the model yeast, Saccharomyces cerevisiae. We searched for orthologous genes encoding proteases A and B in the genome of P. antarctica GB-4(0) based on the predicted amino acid sequences. We found two gene candidates, PaPRO1 and PaPRO2, with conserved catalytically important domains and signal peptides indicative of vacuolar protease function. We then prepared gene-deletion mutants of strain GB-4(0), Delta PaPRO1 and Delta PaPRO2, and evaluated PaE stability in culture by immunoblotting analysis. Both mutants exhibited sufficient production of PaE without degradation fragments, while the parent strain exhibited the degradation fragments. Therefore, we concluded that the protease A and B orthologous genes are related to the degradation of PaE. To produce a large quantity of PaE, we made a PaPRO2 deletion mutant of a PaE-overexpression strain named XG8 by introducing a PaE high-production cassette into the strain GB-4(0). The Delta PaPRO2 mutant of XG8 was able to produce PaE without the degradation fragments during large-scale cultivation in a 3-L jar fermenter for 3 days at 30 degrees C. After terminating the agitation, the PaE activity in the XG8 Delta PaPRO2 mutant culture was maintained for the subsequent 48 h incubation at 25 degrees C regardless of remaining cells, while activity in the XG8 control was reduced to 55.1%. The gene-deleted mutants will be useful for the development of industrial processes of PaE production and storage.</abstract><cop>SAN FRANCISCO</cop><pub>Public Library Science</pub><pmid>33730094</pmid><doi>10.1371/journal.pone.0247462</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-6956-3096</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2021-03, Vol.16 (3), p.e0247462-e0247462, Article 0247462
issn 1932-6203
1932-6203
language eng
recordid cdi_gale_infotracmisc_A655343507
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Amino Acid Sequence - genetics
Basidiomycota - enzymology
Basidiomycota - genetics
Basidiomycota - metabolism
Biodegradability
Biodegradable Plastics - metabolism
Biodegradation
Biology and Life Sciences
Bioplastics
Chemical properties
Commercialization
Deoxyribonucleic acid
DNA
DNA, Fungal - genetics
Endopeptidases - genetics
Endopeptidases - metabolism
Environmental degradation
Environmental science
Enzymes
Fungal Proteins - genetics
Gene amplification
Gene expression
Genes
Genetic aspects
Genomes
Multidisciplinary Sciences
Peptide Hydrolases - genetics
Peptide Hydrolases - metabolism
Physical Sciences
Plasmids
Plastics
Poly(L-lactide)
Polycaprolactone
Polyesters
Polylactic acid
Proteases
Proteins
Research and Analysis Methods
Science & Technology
Science & Technology - Other Topics
Serine Endopeptidases - genetics
Serine Endopeptidases - metabolism
Synthesis
Xylose - metabolism
Yeast
Yeasts
title Disruption of protease A and B orthologous genes in the basidiomycetous yeast Pseudozyma antarctica GB-4(0) yields a stable extracellular biodegradable plastic-degrading enzyme
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T10%3A38%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disruption%20of%20protease%20A%20and%20B%20orthologous%20genes%20in%20the%20basidiomycetous%20yeast%20Pseudozyma%20antarctica%20GB-4(0)%20yields%20a%20stable%20extracellular%20biodegradable%20plastic-degrading%20enzyme&rft.jtitle=PloS%20one&rft.au=Omae,%20Natsuki&rft.date=2021-03-17&rft.volume=16&rft.issue=3&rft.spage=e0247462&rft.epage=e0247462&rft.pages=e0247462-e0247462&rft.artnum=0247462&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0247462&rft_dat=%3Cgale_webof%3EA655343507%3C/gale_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2502193348&rft_id=info:pmid/33730094&rft_galeid=A655343507&rft_doaj_id=oai_doaj_org_article_20aaad40a2524ea083b28581fdc89256&rfr_iscdi=true