The Obata equation with Robin boundary condition
We study the Obata equation with Robin boundary condition \partial f/\partial \nu + af = 0 on manifolds with boundary, where a is a non-zero constant. Dirichlet and Neumann boundary conditions were previously studied by Reilly, Escobar and Xia. Compared with their results, the sign of a plays an imp...
Gespeichert in:
Veröffentlicht in: | Revista matemática iberoamericana 2021-03, Vol.37 (2), p.643-670 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 670 |
---|---|
container_issue | 2 |
container_start_page | 643 |
container_title | Revista matemática iberoamericana |
container_volume | 37 |
creator | Chen, Xuezhang Lai, Mijia Wang, Fang |
description | We study the Obata equation with Robin boundary condition
\partial f/\partial \nu + af = 0
on manifolds with boundary, where
a
is a non-zero constant. Dirichlet and Neumann boundary conditions were previously studied by Reilly, Escobar and Xia. Compared with their results, the sign of
a
plays an important role here. The new discovery shows besides spherical domains, there are other manifolds for both
a > 0
and
a < 0
. We also consider the Obata equation with non-vanishing Neumann condition
\partial f/\partial \nu=1
. |
doi_str_mv | 10.4171/RMI/1212 |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracmisc_A654337753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A654337753</galeid><sourcerecordid>A654337753</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-2db42be7ddf7885c333c5a4ac7a5365df5584876dfebc51b550dfbc1b7b9a8ad3</originalsourceid><addsrcrecordid>eNptUMtKAzEUDaLgWAU_IeDGzbR5TuKyFK2FSqHUdcjTRjoTTaaIf-8MdSPIXRw4j8u9B4BbjKYMCzzbvqxmmGByBipCKK9Rg5tzUCGCaT0Q6BJclfKOEGEIoQqg3d7DjdG9hv7zqPuYOvgV-z3cJhM7aNKxczp_Q5s6F0f1GlwEfSj-5hcn4PXpcbd4rteb5WoxX9eWEtnXxBlGjBfOBSElt5RSyzXTVmhOG-4C55JJ0bjgjeXYcI5cMBYbYR601I5OwN1p75s-eBW7kPqsbRuLVfOGM0qF4HRwTf9xDeN8G4ebfYgD_ydwfwrYnErJPqiPHNvhQ4WRGgtUuY1qLJD-AAy1Yak</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Obata equation with Robin boundary condition</title><source>European Mathematical Society Publishing House</source><creator>Chen, Xuezhang ; Lai, Mijia ; Wang, Fang</creator><creatorcontrib>Chen, Xuezhang ; Lai, Mijia ; Wang, Fang</creatorcontrib><description>We study the Obata equation with Robin boundary condition
\partial f/\partial \nu + af = 0
on manifolds with boundary, where
a
is a non-zero constant. Dirichlet and Neumann boundary conditions were previously studied by Reilly, Escobar and Xia. Compared with their results, the sign of
a
plays an important role here. The new discovery shows besides spherical domains, there are other manifolds for both
a > 0
and
a < 0
. We also consider the Obata equation with non-vanishing Neumann condition
\partial f/\partial \nu=1
.</description><identifier>ISSN: 0213-2230</identifier><identifier>EISSN: 2235-0616</identifier><identifier>DOI: 10.4171/RMI/1212</identifier><language>eng</language><publisher>European Mathematical Society Publishing House</publisher><ispartof>Revista matemática iberoamericana, 2021-03, Vol.37 (2), p.643-670</ispartof><rights>COPYRIGHT 2021 European Mathematical Society Publishing House</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-2db42be7ddf7885c333c5a4ac7a5365df5584876dfebc51b550dfbc1b7b9a8ad3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Chen, Xuezhang</creatorcontrib><creatorcontrib>Lai, Mijia</creatorcontrib><creatorcontrib>Wang, Fang</creatorcontrib><title>The Obata equation with Robin boundary condition</title><title>Revista matemática iberoamericana</title><description>We study the Obata equation with Robin boundary condition
\partial f/\partial \nu + af = 0
on manifolds with boundary, where
a
is a non-zero constant. Dirichlet and Neumann boundary conditions were previously studied by Reilly, Escobar and Xia. Compared with their results, the sign of
a
plays an important role here. The new discovery shows besides spherical domains, there are other manifolds for both
a > 0
and
a < 0
. We also consider the Obata equation with non-vanishing Neumann condition
\partial f/\partial \nu=1
.</description><issn>0213-2230</issn><issn>2235-0616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNptUMtKAzEUDaLgWAU_IeDGzbR5TuKyFK2FSqHUdcjTRjoTTaaIf-8MdSPIXRw4j8u9B4BbjKYMCzzbvqxmmGByBipCKK9Rg5tzUCGCaT0Q6BJclfKOEGEIoQqg3d7DjdG9hv7zqPuYOvgV-z3cJhM7aNKxczp_Q5s6F0f1GlwEfSj-5hcn4PXpcbd4rteb5WoxX9eWEtnXxBlGjBfOBSElt5RSyzXTVmhOG-4C55JJ0bjgjeXYcI5cMBYbYR601I5OwN1p75s-eBW7kPqsbRuLVfOGM0qF4HRwTf9xDeN8G4ebfYgD_ydwfwrYnErJPqiPHNvhQ4WRGgtUuY1qLJD-AAy1Yak</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Chen, Xuezhang</creator><creator>Lai, Mijia</creator><creator>Wang, Fang</creator><general>European Mathematical Society Publishing House</general><scope>AAYXX</scope><scope>CITATION</scope><scope>INF</scope></search><sort><creationdate>20210301</creationdate><title>The Obata equation with Robin boundary condition</title><author>Chen, Xuezhang ; Lai, Mijia ; Wang, Fang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-2db42be7ddf7885c333c5a4ac7a5365df5584876dfebc51b550dfbc1b7b9a8ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xuezhang</creatorcontrib><creatorcontrib>Lai, Mijia</creatorcontrib><creatorcontrib>Wang, Fang</creatorcontrib><collection>CrossRef</collection><collection>Gale OneFile: Informe Academico</collection><jtitle>Revista matemática iberoamericana</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xuezhang</au><au>Lai, Mijia</au><au>Wang, Fang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Obata equation with Robin boundary condition</atitle><jtitle>Revista matemática iberoamericana</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>37</volume><issue>2</issue><spage>643</spage><epage>670</epage><pages>643-670</pages><issn>0213-2230</issn><eissn>2235-0616</eissn><abstract>We study the Obata equation with Robin boundary condition
\partial f/\partial \nu + af = 0
on manifolds with boundary, where
a
is a non-zero constant. Dirichlet and Neumann boundary conditions were previously studied by Reilly, Escobar and Xia. Compared with their results, the sign of
a
plays an important role here. The new discovery shows besides spherical domains, there are other manifolds for both
a > 0
and
a < 0
. We also consider the Obata equation with non-vanishing Neumann condition
\partial f/\partial \nu=1
.</abstract><pub>European Mathematical Society Publishing House</pub><doi>10.4171/RMI/1212</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0213-2230 |
ispartof | Revista matemática iberoamericana, 2021-03, Vol.37 (2), p.643-670 |
issn | 0213-2230 2235-0616 |
language | eng |
recordid | cdi_gale_infotracmisc_A654337753 |
source | European Mathematical Society Publishing House |
title | The Obata equation with Robin boundary condition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T20%3A40%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Obata%20equation%20with%20Robin%20boundary%20condition&rft.jtitle=Revista%20matem%C3%A1tica%20iberoamericana&rft.au=Chen,%20Xuezhang&rft.date=2021-03-01&rft.volume=37&rft.issue=2&rft.spage=643&rft.epage=670&rft.pages=643-670&rft.issn=0213-2230&rft.eissn=2235-0616&rft_id=info:doi/10.4171/RMI/1212&rft_dat=%3Cgale_cross%3EA654337753%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A654337753&rfr_iscdi=true |