Deep Learning Framework with ECG Feature-Based Kernels for Heart Disease Classification

Heart disease classification with high accuracy can support the physician’s correct decision on patients. This paper proposes a kernel size calculation based on P, Q, R, and S waves of one heartbeat to enhance classification accuracy in a deep learning framework. In addition, Electrocardiogram (ECG)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Elektronika ir elektrotechnika 2021-02, Vol.27 (1), p.48-59
Hauptverfasser: Nguyen, Thanh-Nghia, Nguyen, Thanh-Hai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 59
container_issue 1
container_start_page 48
container_title Elektronika ir elektrotechnika
container_volume 27
creator Nguyen, Thanh-Nghia
Nguyen, Thanh-Hai
description Heart disease classification with high accuracy can support the physician’s correct decision on patients. This paper proposes a kernel size calculation based on P, Q, R, and S waves of one heartbeat to enhance classification accuracy in a deep learning framework. In addition, Electrocardiogram (ECG) signals were filtered using wavelet transform with dmey wavelet, in which the shape of the dmey is closed to that of one heartbeat. With this selected dmey, each heartbeat was standardized with 300 samples for calculation of kernel sizes so that it contains most features in each heartbeat. Therefore, in this research, with 103,459 heart rhythms from the MIT-BIH Arrhythmia Database, the proposed approach for calculation of kernel sizes is effective with seven convolutional layers and other fully connected layers in a Deep Neural Network (DNN). In particular, with five types of heart disease, the result of the high classification accuracy is about 99.4 %. It means that the proposed kernel size calculation in the convolutional layers can achieve good classification performance and it may be developed for classifying different types of disease.
doi_str_mv 10.5755/j02.eie.27642
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracmisc_A654001350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A654001350</galeid><sourcerecordid>A654001350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c304t-8126ad9dcd61631d2a84a83b1447301e5c7acf72a98fd2b99dd36b92f7e90b153</originalsourceid><addsrcrecordid>eNptkEtLAzEURoMoWGqX7gOup-YxmZks6_QlFtwoLkMmuanReZRkpPjvjdaNIHdx4d7vfIuD0DUlc1EKcftG2Bw8zFlZ5OwMTRhhMhMlp-doQrlkGWVUXKJZjL4hlDDGOc0n6GUJcMA70KH3_R6vg-7gOIR3fPTjK17VG7wGPX4EyO50BIsfIPTQRuyGgLeJGvHSR0gvXLc6dTtv9OiH_gpdON1GmP3uKXper57qbbZ73NzXi11mOMnHrKKs0FZaYwtacGqZrnJd8YbmeckJBWFKbVzJtKycZY2U1vKikcyVIElDBZ-im1PvXregfO-GMWjT-WjUohA5IZQLklLzf1JpLHTeDD04n-5_gOwEmDDEGMCpQ_CdDp-KEvXtWyXfKvlWP775F6vNcb0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Deep Learning Framework with ECG Feature-Based Kernels for Heart Disease Classification</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Nguyen, Thanh-Nghia ; Nguyen, Thanh-Hai</creator><creatorcontrib>Nguyen, Thanh-Nghia ; Nguyen, Thanh-Hai</creatorcontrib><description>Heart disease classification with high accuracy can support the physician’s correct decision on patients. This paper proposes a kernel size calculation based on P, Q, R, and S waves of one heartbeat to enhance classification accuracy in a deep learning framework. In addition, Electrocardiogram (ECG) signals were filtered using wavelet transform with dmey wavelet, in which the shape of the dmey is closed to that of one heartbeat. With this selected dmey, each heartbeat was standardized with 300 samples for calculation of kernel sizes so that it contains most features in each heartbeat. Therefore, in this research, with 103,459 heart rhythms from the MIT-BIH Arrhythmia Database, the proposed approach for calculation of kernel sizes is effective with seven convolutional layers and other fully connected layers in a Deep Neural Network (DNN). In particular, with five types of heart disease, the result of the high classification accuracy is about 99.4 %. It means that the proposed kernel size calculation in the convolutional layers can achieve good classification performance and it may be developed for classifying different types of disease.</description><identifier>ISSN: 1392-1215</identifier><identifier>EISSN: 2029-5731</identifier><identifier>DOI: 10.5755/j02.eie.27642</identifier><language>eng</language><publisher>Kaunas University of Technology, Faculty of Telecommunications and Electronics</publisher><subject>Analysis ; Arrhythmia ; Cable television broadcasting industry ; Electrocardiogram ; Electrocardiography ; Heart beat ; Neural networks</subject><ispartof>Elektronika ir elektrotechnika, 2021-02, Vol.27 (1), p.48-59</ispartof><rights>COPYRIGHT 2021 Kaunas University of Technology, Faculty of Telecommunications and Electronics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c304t-8126ad9dcd61631d2a84a83b1447301e5c7acf72a98fd2b99dd36b92f7e90b153</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27922,27923</link.rule.ids></links><search><creatorcontrib>Nguyen, Thanh-Nghia</creatorcontrib><creatorcontrib>Nguyen, Thanh-Hai</creatorcontrib><title>Deep Learning Framework with ECG Feature-Based Kernels for Heart Disease Classification</title><title>Elektronika ir elektrotechnika</title><description>Heart disease classification with high accuracy can support the physician’s correct decision on patients. This paper proposes a kernel size calculation based on P, Q, R, and S waves of one heartbeat to enhance classification accuracy in a deep learning framework. In addition, Electrocardiogram (ECG) signals were filtered using wavelet transform with dmey wavelet, in which the shape of the dmey is closed to that of one heartbeat. With this selected dmey, each heartbeat was standardized with 300 samples for calculation of kernel sizes so that it contains most features in each heartbeat. Therefore, in this research, with 103,459 heart rhythms from the MIT-BIH Arrhythmia Database, the proposed approach for calculation of kernel sizes is effective with seven convolutional layers and other fully connected layers in a Deep Neural Network (DNN). In particular, with five types of heart disease, the result of the high classification accuracy is about 99.4 %. It means that the proposed kernel size calculation in the convolutional layers can achieve good classification performance and it may be developed for classifying different types of disease.</description><subject>Analysis</subject><subject>Arrhythmia</subject><subject>Cable television broadcasting industry</subject><subject>Electrocardiogram</subject><subject>Electrocardiography</subject><subject>Heart beat</subject><subject>Neural networks</subject><issn>1392-1215</issn><issn>2029-5731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNptkEtLAzEURoMoWGqX7gOup-YxmZks6_QlFtwoLkMmuanReZRkpPjvjdaNIHdx4d7vfIuD0DUlc1EKcftG2Bw8zFlZ5OwMTRhhMhMlp-doQrlkGWVUXKJZjL4hlDDGOc0n6GUJcMA70KH3_R6vg-7gOIR3fPTjK17VG7wGPX4EyO50BIsfIPTQRuyGgLeJGvHSR0gvXLc6dTtv9OiH_gpdON1GmP3uKXper57qbbZ73NzXi11mOMnHrKKs0FZaYwtacGqZrnJd8YbmeckJBWFKbVzJtKycZY2U1vKikcyVIElDBZ-im1PvXregfO-GMWjT-WjUohA5IZQLklLzf1JpLHTeDD04n-5_gOwEmDDEGMCpQ_CdDp-KEvXtWyXfKvlWP775F6vNcb0</recordid><startdate>20210225</startdate><enddate>20210225</enddate><creator>Nguyen, Thanh-Nghia</creator><creator>Nguyen, Thanh-Hai</creator><general>Kaunas University of Technology, Faculty of Telecommunications and Electronics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210225</creationdate><title>Deep Learning Framework with ECG Feature-Based Kernels for Heart Disease Classification</title><author>Nguyen, Thanh-Nghia ; Nguyen, Thanh-Hai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c304t-8126ad9dcd61631d2a84a83b1447301e5c7acf72a98fd2b99dd36b92f7e90b153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Arrhythmia</topic><topic>Cable television broadcasting industry</topic><topic>Electrocardiogram</topic><topic>Electrocardiography</topic><topic>Heart beat</topic><topic>Neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Thanh-Nghia</creatorcontrib><creatorcontrib>Nguyen, Thanh-Hai</creatorcontrib><collection>CrossRef</collection><jtitle>Elektronika ir elektrotechnika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Thanh-Nghia</au><au>Nguyen, Thanh-Hai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning Framework with ECG Feature-Based Kernels for Heart Disease Classification</atitle><jtitle>Elektronika ir elektrotechnika</jtitle><date>2021-02-25</date><risdate>2021</risdate><volume>27</volume><issue>1</issue><spage>48</spage><epage>59</epage><pages>48-59</pages><issn>1392-1215</issn><eissn>2029-5731</eissn><abstract>Heart disease classification with high accuracy can support the physician’s correct decision on patients. This paper proposes a kernel size calculation based on P, Q, R, and S waves of one heartbeat to enhance classification accuracy in a deep learning framework. In addition, Electrocardiogram (ECG) signals were filtered using wavelet transform with dmey wavelet, in which the shape of the dmey is closed to that of one heartbeat. With this selected dmey, each heartbeat was standardized with 300 samples for calculation of kernel sizes so that it contains most features in each heartbeat. Therefore, in this research, with 103,459 heart rhythms from the MIT-BIH Arrhythmia Database, the proposed approach for calculation of kernel sizes is effective with seven convolutional layers and other fully connected layers in a Deep Neural Network (DNN). In particular, with five types of heart disease, the result of the high classification accuracy is about 99.4 %. It means that the proposed kernel size calculation in the convolutional layers can achieve good classification performance and it may be developed for classifying different types of disease.</abstract><pub>Kaunas University of Technology, Faculty of Telecommunications and Electronics</pub><doi>10.5755/j02.eie.27642</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1392-1215
ispartof Elektronika ir elektrotechnika, 2021-02, Vol.27 (1), p.48-59
issn 1392-1215
2029-5731
language eng
recordid cdi_gale_infotracmisc_A654001350
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Analysis
Arrhythmia
Cable television broadcasting industry
Electrocardiogram
Electrocardiography
Heart beat
Neural networks
title Deep Learning Framework with ECG Feature-Based Kernels for Heart Disease Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T18%3A36%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning%20Framework%20with%20ECG%20Feature-Based%20Kernels%20for%20Heart%20Disease%20Classification&rft.jtitle=Elektronika%20ir%20elektrotechnika&rft.au=Nguyen,%20Thanh-Nghia&rft.date=2021-02-25&rft.volume=27&rft.issue=1&rft.spage=48&rft.epage=59&rft.pages=48-59&rft.issn=1392-1215&rft.eissn=2029-5731&rft_id=info:doi/10.5755/j02.eie.27642&rft_dat=%3Cgale_cross%3EA654001350%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A654001350&rfr_iscdi=true