A limiting free boundary problem for a degenerate operator in Orlicz–Sobolev spaces

A free boundary optimization problem involving the $\Phi$-Laplacian in Orlicz–Sobolev spaces is considered for the case where $\Phi$ does not satisfy the natural conditions introduced by Lieberman. A minimizer $u\Phi$ having non-degeneracy at the free boundary is proved to exist and some important c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista matemática iberoamericana 2020-01, Vol.36 (6), p.1687-1720
Hauptverfasser: Abrantes Santos, Jefferson, Monari Soares, Sergio
Format: Artikel
Sprache:eng ; spa
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1720
container_issue 6
container_start_page 1687
container_title Revista matemática iberoamericana
container_volume 36
creator Abrantes Santos, Jefferson
Monari Soares, Sergio
description A free boundary optimization problem involving the $\Phi$-Laplacian in Orlicz–Sobolev spaces is considered for the case where $\Phi$ does not satisfy the natural conditions introduced by Lieberman. A minimizer $u\Phi$ having non-degeneracy at the free boundary is proved to exist and some important consequences are established, namely, the Lipschitz regularity of $u\Phi$ along the free boundary, that the positivity set of $u\Phi$ has locally uniform positive density, and that the free boundary is porous with porosity $\delta > 0$ and has finite $(N − \delta)$-Hausdorff measure. The method is based on a truncated minimization problem in terms of the Taylor polynomial of $\Phi$ of order $2k$. The proof demands to revisit the Lieberman proof of a Harnack inequality and verify that the associated constant with this inequality is independent of $k$ provided that $k$ is sufficiently large.
doi_str_mv 10.4171/rmi/1180
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracmisc_A640420164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A640420164</galeid><sourcerecordid>A640420164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-c420f0f2a75b9e81245645caf19a3a24f0254260fed9499f08f5e7c01b19d8953</originalsourceid><addsrcrecordid>eNptkMFKAzEURYMoWKvgJwR04Wbal0xmOrMsxapQ6EK7DpnMS0mZmQzJVNCV_-Af-iWm1I0ob3Hhcu6Fdwm5ZjARbMamvrVTxgo4ISPO0yyBnOWnZAScpUk04JxchLAD4AIARmQzp41t7WC7LTUekVZu39XKv9Heu6rBlhrnqaI1brFDrwakrj9odG1H176x-v3r4_PZVa7BVxp6pTFckjOjmoBXPzomm-X9y-IxWa0fnhbzVaJTng6JFhwMGK5mWVViwbjIcpFpZVipUsWFAZ4JnoPBuhRlaaAwGc40sIqVdVFm6ZjcHHu3qkFpO-MGr3Rrg5bzXECsZ7mI1OQfKl6NrdWuQ2Oj_ytwdwxo70LwaGTvbRtHkQzkYWUZV5aHlSN6e0SxDXLn9r6L__7FvgEHjnrP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A limiting free boundary problem for a degenerate operator in Orlicz–Sobolev spaces</title><source>European Mathematical Society Publishing House</source><creator>Abrantes Santos, Jefferson ; Monari Soares, Sergio</creator><creatorcontrib>Abrantes Santos, Jefferson ; Monari Soares, Sergio</creatorcontrib><description>A free boundary optimization problem involving the $\Phi$-Laplacian in Orlicz–Sobolev spaces is considered for the case where $\Phi$ does not satisfy the natural conditions introduced by Lieberman. A minimizer $u\Phi$ having non-degeneracy at the free boundary is proved to exist and some important consequences are established, namely, the Lipschitz regularity of $u\Phi$ along the free boundary, that the positivity set of $u\Phi$ has locally uniform positive density, and that the free boundary is porous with porosity $\delta &gt; 0$ and has finite $(N − \delta)$-Hausdorff measure. The method is based on a truncated minimization problem in terms of the Taylor polynomial of $\Phi$ of order $2k$. The proof demands to revisit the Lieberman proof of a Harnack inequality and verify that the associated constant with this inequality is independent of $k$ provided that $k$ is sufficiently large.</description><identifier>ISSN: 0213-2230</identifier><identifier>EISSN: 2235-0616</identifier><identifier>DOI: 10.4171/rmi/1180</identifier><language>eng ; spa</language><publisher>Zuerich, Switzerland: European Mathematical Society Publishing House</publisher><subject>Functional analysis ; Partial differential equations ; Porosity</subject><ispartof>Revista matemática iberoamericana, 2020-01, Vol.36 (6), p.1687-1720</ispartof><rights>European Mathematical Society (from 2012)</rights><rights>COPYRIGHT 2020 European Mathematical Society Publishing House</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-c420f0f2a75b9e81245645caf19a3a24f0254260fed9499f08f5e7c01b19d8953</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,24051,27922,27923</link.rule.ids></links><search><creatorcontrib>Abrantes Santos, Jefferson</creatorcontrib><creatorcontrib>Monari Soares, Sergio</creatorcontrib><title>A limiting free boundary problem for a degenerate operator in Orlicz–Sobolev spaces</title><title>Revista matemática iberoamericana</title><addtitle>Rev. Mat. Iberoam</addtitle><description>A free boundary optimization problem involving the $\Phi$-Laplacian in Orlicz–Sobolev spaces is considered for the case where $\Phi$ does not satisfy the natural conditions introduced by Lieberman. A minimizer $u\Phi$ having non-degeneracy at the free boundary is proved to exist and some important consequences are established, namely, the Lipschitz regularity of $u\Phi$ along the free boundary, that the positivity set of $u\Phi$ has locally uniform positive density, and that the free boundary is porous with porosity $\delta &gt; 0$ and has finite $(N − \delta)$-Hausdorff measure. The method is based on a truncated minimization problem in terms of the Taylor polynomial of $\Phi$ of order $2k$. The proof demands to revisit the Lieberman proof of a Harnack inequality and verify that the associated constant with this inequality is independent of $k$ provided that $k$ is sufficiently large.</description><subject>Functional analysis</subject><subject>Partial differential equations</subject><subject>Porosity</subject><issn>0213-2230</issn><issn>2235-0616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNptkMFKAzEURYMoWKvgJwR04Wbal0xmOrMsxapQ6EK7DpnMS0mZmQzJVNCV_-Af-iWm1I0ob3Hhcu6Fdwm5ZjARbMamvrVTxgo4ISPO0yyBnOWnZAScpUk04JxchLAD4AIARmQzp41t7WC7LTUekVZu39XKv9Heu6rBlhrnqaI1brFDrwakrj9odG1H176x-v3r4_PZVa7BVxp6pTFckjOjmoBXPzomm-X9y-IxWa0fnhbzVaJTng6JFhwMGK5mWVViwbjIcpFpZVipUsWFAZ4JnoPBuhRlaaAwGc40sIqVdVFm6ZjcHHu3qkFpO-MGr3Rrg5bzXECsZ7mI1OQfKl6NrdWuQ2Oj_ytwdwxo70LwaGTvbRtHkQzkYWUZV5aHlSN6e0SxDXLn9r6L__7FvgEHjnrP</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Abrantes Santos, Jefferson</creator><creator>Monari Soares, Sergio</creator><general>European Mathematical Society Publishing House</general><scope>AAYXX</scope><scope>CITATION</scope><scope>INF</scope></search><sort><creationdate>20200101</creationdate><title>A limiting free boundary problem for a degenerate operator in Orlicz–Sobolev spaces</title><author>Abrantes Santos, Jefferson ; Monari Soares, Sergio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-c420f0f2a75b9e81245645caf19a3a24f0254260fed9499f08f5e7c01b19d8953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; spa</language><creationdate>2020</creationdate><topic>Functional analysis</topic><topic>Partial differential equations</topic><topic>Porosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abrantes Santos, Jefferson</creatorcontrib><creatorcontrib>Monari Soares, Sergio</creatorcontrib><collection>CrossRef</collection><collection>Gale OneFile: Informe Academico</collection><jtitle>Revista matemática iberoamericana</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abrantes Santos, Jefferson</au><au>Monari Soares, Sergio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A limiting free boundary problem for a degenerate operator in Orlicz–Sobolev spaces</atitle><jtitle>Revista matemática iberoamericana</jtitle><addtitle>Rev. Mat. Iberoam</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>36</volume><issue>6</issue><spage>1687</spage><epage>1720</epage><pages>1687-1720</pages><issn>0213-2230</issn><eissn>2235-0616</eissn><abstract>A free boundary optimization problem involving the $\Phi$-Laplacian in Orlicz–Sobolev spaces is considered for the case where $\Phi$ does not satisfy the natural conditions introduced by Lieberman. A minimizer $u\Phi$ having non-degeneracy at the free boundary is proved to exist and some important consequences are established, namely, the Lipschitz regularity of $u\Phi$ along the free boundary, that the positivity set of $u\Phi$ has locally uniform positive density, and that the free boundary is porous with porosity $\delta &gt; 0$ and has finite $(N − \delta)$-Hausdorff measure. The method is based on a truncated minimization problem in terms of the Taylor polynomial of $\Phi$ of order $2k$. The proof demands to revisit the Lieberman proof of a Harnack inequality and verify that the associated constant with this inequality is independent of $k$ provided that $k$ is sufficiently large.</abstract><cop>Zuerich, Switzerland</cop><pub>European Mathematical Society Publishing House</pub><doi>10.4171/rmi/1180</doi><tpages>34</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0213-2230
ispartof Revista matemática iberoamericana, 2020-01, Vol.36 (6), p.1687-1720
issn 0213-2230
2235-0616
language eng ; spa
recordid cdi_gale_infotracmisc_A640420164
source European Mathematical Society Publishing House
subjects Functional analysis
Partial differential equations
Porosity
title A limiting free boundary problem for a degenerate operator in Orlicz–Sobolev spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A02%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20limiting%20free%20boundary%20problem%20for%20a%20degenerate%20operator%20in%20Orlicz%E2%80%93Sobolev%20spaces&rft.jtitle=Revista%20matem%C3%A1tica%20iberoamericana&rft.au=Abrantes%20Santos,%20Jefferson&rft.date=2020-01-01&rft.volume=36&rft.issue=6&rft.spage=1687&rft.epage=1720&rft.pages=1687-1720&rft.issn=0213-2230&rft.eissn=2235-0616&rft_id=info:doi/10.4171/rmi/1180&rft_dat=%3Cgale_cross%3EA640420164%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A640420164&rfr_iscdi=true