Regularity estimates in weighted Morrey spaces for quasilinear elliptic equations
We study regularity for solutions of quasilinear elliptic equations of the form $\mathrm {div}\mathbf{A}(x,u,\nabla u)=\mathrm {div}\mathbf{F}$ in bounded domains in $\mathbb{R}^n$. The vector field $\mathbf{A}$ is assumed to be continuous in $u$, and its growth in $\nabla u$ is like that of the $p$...
Gespeichert in:
Veröffentlicht in: | Revista matemática iberoamericana 2020-01, Vol.36 (6), p.1627-1658 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng ; spa |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1658 |
---|---|
container_issue | 6 |
container_start_page | 1627 |
container_title | Revista matemática iberoamericana |
container_volume | 36 |
creator | Di Fazio, Giuseppe Nguyen, Truyen |
description | We study regularity for solutions of quasilinear elliptic equations of the form $\mathrm {div}\mathbf{A}(x,u,\nabla u)=\mathrm {div}\mathbf{F}$ in bounded domains in $\mathbb{R}^n$. The vector field $\mathbf{A}$ is assumed to be continuous in $u$, and its growth in $\nabla u$ is like that of the $p$-Laplace operator. We establish interior gradient estimates in weighted Morrey spaces for weak solutions $u$ to the equation under a small BMO condition in $x$ for $\mathbf{A}$. As a consequence, we obtain that $\nabla u$ is in the classical Morrey space $\mathcal{M}^{q,\lambda}$ or weighted space $L^q_w$ whenever $|\mathbf{F}|^{1/(p-1)}$ is respectively in $\mathcal{M}^{q,\lambda}$ or $L^q_w$, where $q$ is any number greater than $p$ and $w$ is any weight in the Muckenhoupt class $A_{q/p}$. In addition, our two-weight estimate allows the possibility to acquire the regularity for $\nabla u$ in a weighted Morrey space that is different from the functional space that the data $|\mathbf{F}|^{1/(p-1)}$ belongs to. |
doi_str_mv | 10.4171/rmi/1178 |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracmisc_A640420162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A640420162</galeid><sourcerecordid>A640420162</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-593fb70eb5bb29b3a484ebb1e43afb5b04a01091ecbd7c35a9a11105b167c3cd3</originalsourceid><addsrcrecordid>eNptkFtLAzEQhYMoWKvgTwjogy_bTi67230sxRtURNHnkGRna8peapIi_fem1BdR5mGYM98ZmEPIJYOJZCWb-s5NGStnR2TEucgzKFhxTEbAmciSAKfkLIQ1AJcAMCIvr7jattq7uKMYout0xEBdT7_QrT4i1vRp8B53NGy0TZtm8PRzq4NrXY_aU2xbt4nOUkxqdEMfzslJo9uAFz99TN7vbt8WD9ny-f5xMV9mVnARs7wSjSkBTW4Mr4zQcibRGIZS6CaJIDUwqBhaU5dW5LrSjDHIDSvSaGsxJleHuyvdonJ9M0SvbeeCVfNCguTACp6oyT9Uqho7Z4ceG5f0X4abg8H6IQSPjdr4lIrfKQZqn7BKCat9wgm9PqDYBbUetr5P__7FvgHw33qS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Regularity estimates in weighted Morrey spaces for quasilinear elliptic equations</title><source>European Mathematical Society Publishing House</source><creator>Di Fazio, Giuseppe ; Nguyen, Truyen</creator><creatorcontrib>Di Fazio, Giuseppe ; Nguyen, Truyen</creatorcontrib><description>We study regularity for solutions of quasilinear elliptic equations of the form $\mathrm {div}\mathbf{A}(x,u,\nabla u)=\mathrm {div}\mathbf{F}$ in bounded domains in $\mathbb{R}^n$. The vector field $\mathbf{A}$ is assumed to be continuous in $u$, and its growth in $\nabla u$ is like that of the $p$-Laplace operator. We establish interior gradient estimates in weighted Morrey spaces for weak solutions $u$ to the equation under a small BMO condition in $x$ for $\mathbf{A}$. As a consequence, we obtain that $\nabla u$ is in the classical Morrey space $\mathcal{M}^{q,\lambda}$ or weighted space $L^q_w$ whenever $|\mathbf{F}|^{1/(p-1)}$ is respectively in $\mathcal{M}^{q,\lambda}$ or $L^q_w$, where $q$ is any number greater than $p$ and $w$ is any weight in the Muckenhoupt class $A_{q/p}$. In addition, our two-weight estimate allows the possibility to acquire the regularity for $\nabla u$ in a weighted Morrey space that is different from the functional space that the data $|\mathbf{F}|^{1/(p-1)}$ belongs to.</description><identifier>ISSN: 0213-2230</identifier><identifier>EISSN: 2235-0616</identifier><identifier>DOI: 10.4171/rmi/1178</identifier><language>eng ; spa</language><publisher>Zuerich, Switzerland: European Mathematical Society Publishing House</publisher><subject>Functions of a complex variable ; Partial differential equations</subject><ispartof>Revista matemática iberoamericana, 2020-01, Vol.36 (6), p.1627-1658</ispartof><rights>European Mathematical Society (from 2012)</rights><rights>COPYRIGHT 2020 European Mathematical Society Publishing House</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-593fb70eb5bb29b3a484ebb1e43afb5b04a01091ecbd7c35a9a11105b167c3cd3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,24051,27922,27923</link.rule.ids></links><search><creatorcontrib>Di Fazio, Giuseppe</creatorcontrib><creatorcontrib>Nguyen, Truyen</creatorcontrib><title>Regularity estimates in weighted Morrey spaces for quasilinear elliptic equations</title><title>Revista matemática iberoamericana</title><addtitle>Rev. Mat. Iberoam</addtitle><description>We study regularity for solutions of quasilinear elliptic equations of the form $\mathrm {div}\mathbf{A}(x,u,\nabla u)=\mathrm {div}\mathbf{F}$ in bounded domains in $\mathbb{R}^n$. The vector field $\mathbf{A}$ is assumed to be continuous in $u$, and its growth in $\nabla u$ is like that of the $p$-Laplace operator. We establish interior gradient estimates in weighted Morrey spaces for weak solutions $u$ to the equation under a small BMO condition in $x$ for $\mathbf{A}$. As a consequence, we obtain that $\nabla u$ is in the classical Morrey space $\mathcal{M}^{q,\lambda}$ or weighted space $L^q_w$ whenever $|\mathbf{F}|^{1/(p-1)}$ is respectively in $\mathcal{M}^{q,\lambda}$ or $L^q_w$, where $q$ is any number greater than $p$ and $w$ is any weight in the Muckenhoupt class $A_{q/p}$. In addition, our two-weight estimate allows the possibility to acquire the regularity for $\nabla u$ in a weighted Morrey space that is different from the functional space that the data $|\mathbf{F}|^{1/(p-1)}$ belongs to.</description><subject>Functions of a complex variable</subject><subject>Partial differential equations</subject><issn>0213-2230</issn><issn>2235-0616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNptkFtLAzEQhYMoWKvgTwjogy_bTi67230sxRtURNHnkGRna8peapIi_fem1BdR5mGYM98ZmEPIJYOJZCWb-s5NGStnR2TEucgzKFhxTEbAmciSAKfkLIQ1AJcAMCIvr7jattq7uKMYout0xEBdT7_QrT4i1vRp8B53NGy0TZtm8PRzq4NrXY_aU2xbt4nOUkxqdEMfzslJo9uAFz99TN7vbt8WD9ny-f5xMV9mVnARs7wSjSkBTW4Mr4zQcibRGIZS6CaJIDUwqBhaU5dW5LrSjDHIDSvSaGsxJleHuyvdonJ9M0SvbeeCVfNCguTACp6oyT9Uqho7Z4ceG5f0X4abg8H6IQSPjdr4lIrfKQZqn7BKCat9wgm9PqDYBbUetr5P__7FvgHw33qS</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Di Fazio, Giuseppe</creator><creator>Nguyen, Truyen</creator><general>European Mathematical Society Publishing House</general><scope>AAYXX</scope><scope>CITATION</scope><scope>INF</scope></search><sort><creationdate>20200101</creationdate><title>Regularity estimates in weighted Morrey spaces for quasilinear elliptic equations</title><author>Di Fazio, Giuseppe ; Nguyen, Truyen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-593fb70eb5bb29b3a484ebb1e43afb5b04a01091ecbd7c35a9a11105b167c3cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; spa</language><creationdate>2020</creationdate><topic>Functions of a complex variable</topic><topic>Partial differential equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di Fazio, Giuseppe</creatorcontrib><creatorcontrib>Nguyen, Truyen</creatorcontrib><collection>CrossRef</collection><collection>Gale OneFile: Informe Academico</collection><jtitle>Revista matemática iberoamericana</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Di Fazio, Giuseppe</au><au>Nguyen, Truyen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regularity estimates in weighted Morrey spaces for quasilinear elliptic equations</atitle><jtitle>Revista matemática iberoamericana</jtitle><addtitle>Rev. Mat. Iberoam</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>36</volume><issue>6</issue><spage>1627</spage><epage>1658</epage><pages>1627-1658</pages><issn>0213-2230</issn><eissn>2235-0616</eissn><abstract>We study regularity for solutions of quasilinear elliptic equations of the form $\mathrm {div}\mathbf{A}(x,u,\nabla u)=\mathrm {div}\mathbf{F}$ in bounded domains in $\mathbb{R}^n$. The vector field $\mathbf{A}$ is assumed to be continuous in $u$, and its growth in $\nabla u$ is like that of the $p$-Laplace operator. We establish interior gradient estimates in weighted Morrey spaces for weak solutions $u$ to the equation under a small BMO condition in $x$ for $\mathbf{A}$. As a consequence, we obtain that $\nabla u$ is in the classical Morrey space $\mathcal{M}^{q,\lambda}$ or weighted space $L^q_w$ whenever $|\mathbf{F}|^{1/(p-1)}$ is respectively in $\mathcal{M}^{q,\lambda}$ or $L^q_w$, where $q$ is any number greater than $p$ and $w$ is any weight in the Muckenhoupt class $A_{q/p}$. In addition, our two-weight estimate allows the possibility to acquire the regularity for $\nabla u$ in a weighted Morrey space that is different from the functional space that the data $|\mathbf{F}|^{1/(p-1)}$ belongs to.</abstract><cop>Zuerich, Switzerland</cop><pub>European Mathematical Society Publishing House</pub><doi>10.4171/rmi/1178</doi><tpages>32</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0213-2230 |
ispartof | Revista matemática iberoamericana, 2020-01, Vol.36 (6), p.1627-1658 |
issn | 0213-2230 2235-0616 |
language | eng ; spa |
recordid | cdi_gale_infotracmisc_A640420162 |
source | European Mathematical Society Publishing House |
subjects | Functions of a complex variable Partial differential equations |
title | Regularity estimates in weighted Morrey spaces for quasilinear elliptic equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T22%3A20%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regularity%20estimates%20in%20weighted%20Morrey%20spaces%20for%20quasilinear%20elliptic%20equations&rft.jtitle=Revista%20matem%C3%A1tica%20iberoamericana&rft.au=Di%20Fazio,%20Giuseppe&rft.date=2020-01-01&rft.volume=36&rft.issue=6&rft.spage=1627&rft.epage=1658&rft.pages=1627-1658&rft.issn=0213-2230&rft.eissn=2235-0616&rft_id=info:doi/10.4171/rmi/1178&rft_dat=%3Cgale_cross%3EA640420162%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A640420162&rfr_iscdi=true |