Regularity estimates in weighted Morrey spaces for quasilinear elliptic equations
We study regularity for solutions of quasilinear elliptic equations of the form $\mathrm {div}\mathbf{A}(x,u,\nabla u)=\mathrm {div}\mathbf{F}$ in bounded domains in $\mathbb{R}^n$. The vector field $\mathbf{A}$ is assumed to be continuous in $u$, and its growth in $\nabla u$ is like that of the $p$...
Gespeichert in:
Veröffentlicht in: | Revista matemática iberoamericana 2020-01, Vol.36 (6), p.1627-1658 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng ; spa |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study regularity for solutions of quasilinear elliptic equations of the form $\mathrm {div}\mathbf{A}(x,u,\nabla u)=\mathrm {div}\mathbf{F}$ in bounded domains in $\mathbb{R}^n$. The vector field $\mathbf{A}$ is assumed to be continuous in $u$, and its growth in $\nabla u$ is like that of the $p$-Laplace operator. We establish interior gradient estimates in weighted Morrey spaces for weak solutions $u$ to the equation under a small BMO condition in $x$ for $\mathbf{A}$. As a consequence, we obtain that $\nabla u$ is in the classical Morrey space $\mathcal{M}^{q,\lambda}$ or weighted space $L^q_w$ whenever $|\mathbf{F}|^{1/(p-1)}$ is respectively in $\mathcal{M}^{q,\lambda}$ or $L^q_w$, where $q$ is any number greater than $p$ and $w$ is any weight in the Muckenhoupt class $A_{q/p}$. In addition, our two-weight estimate allows the possibility to acquire the regularity for $\nabla u$ in a weighted Morrey space that is different from the functional space that the data $|\mathbf{F}|^{1/(p-1)}$ belongs to. |
---|---|
ISSN: | 0213-2230 2235-0616 |
DOI: | 10.4171/rmi/1178 |