SEIHRD mathematical model of Covid19-stability analysis using fast-slow decomposition

In general, a mathematical model that contains many linear/nonlinear differential equations, describing a phenomenon, does not have an explicit hierarchy of system variables. That is, the identification of the fast variables and the slow variables of the system is not explicitly clear. The decomposi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PeerJ (San Francisco, CA) CA), 2020-09, Vol.8
Hauptverfasser: Nave, OPhir, Hartuv, Israel, Shemesh, Uziel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title PeerJ (San Francisco, CA)
container_volume 8
creator Nave, OPhir
Hartuv, Israel
Shemesh, Uziel
description In general, a mathematical model that contains many linear/nonlinear differential equations, describing a phenomenon, does not have an explicit hierarchy of system variables. That is, the identification of the fast variables and the slow variables of the system is not explicitly clear. The decomposition of a system into fast and slow subsystems is usually based on intuitive ideas and knowledge of the mathematical model being investigated. In this study, we apply the singular perturbed vector field (SPVF) method to the COVID-19 mathematical model of to expose the hierarchy of the model. This decomposition enables us to rewrite the model in new coordinates in the form of fast and slow subsystems and, hence, to investigate only the fast subsystem with different asymptotic methods. In addition, this decomposition enables us to investigate the stability analysis of the model, which is important in case of COVID-19. We found the stable equilibrium points of the mathematical model and compared the results of the model with those reported by the Chinese authorities and found a fit of approximately 96 percent.
doi_str_mv 10.7717/peerj.10019
format Article
fullrecord <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracmisc_A636065202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A636065202</galeid><sourcerecordid>A636065202</sourcerecordid><originalsourceid>FETCH-LOGICAL-g982-19c615a07e365b8d4ce02fd2600ce9ef35665c453e2705d9d7f3650dcf0d014d3</originalsourceid><addsrcrecordid>eNptj01LAzEQhoMoWGpP_oGA4G1rPppkcyy12kJB0HouaTJpU7Kb0myV_nsjeqjgDMw7DM87zCB0S8lQKaoe9gCH3ZASQvUF6jEqVVVzoS_P-ms0yHlHStRMkpr30PvbdD57fcSN6bZQSrAm4iY5iDh5PEkfwVFd5c6sQwzdCZvWxFMOGR9zaDfYm9xVOaZP7MCmZp9y6EJqb9CVNzHD4Ff7aPk0XU5m1eLleT4ZL6qNrllFtZVUGKKAS7Gu3cgCYd6Vy4gFDZ4LKYUdCQ5MEeG0U76AxFlPHKEjx_vo7mftxkRYhdan7mBsE7JdjSWXRApGWKGG_1AlHTTBphZ8KPM_hvszwxZM7LY5xeP3Z_kc_AJ8Nm7_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>SEIHRD mathematical model of Covid19-stability analysis using fast-slow decomposition</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Nave, OPhir ; Hartuv, Israel ; Shemesh, Uziel</creator><creatorcontrib>Nave, OPhir ; Hartuv, Israel ; Shemesh, Uziel</creatorcontrib><description>In general, a mathematical model that contains many linear/nonlinear differential equations, describing a phenomenon, does not have an explicit hierarchy of system variables. That is, the identification of the fast variables and the slow variables of the system is not explicitly clear. The decomposition of a system into fast and slow subsystems is usually based on intuitive ideas and knowledge of the mathematical model being investigated. In this study, we apply the singular perturbed vector field (SPVF) method to the COVID-19 mathematical model of to expose the hierarchy of the model. This decomposition enables us to rewrite the model in new coordinates in the form of fast and slow subsystems and, hence, to investigate only the fast subsystem with different asymptotic methods. In addition, this decomposition enables us to investigate the stability analysis of the model, which is important in case of COVID-19. We found the stable equilibrium points of the mathematical model and compared the results of the model with those reported by the Chinese authorities and found a fit of approximately 96 percent.</description><identifier>ISSN: 2167-8359</identifier><identifier>EISSN: 2167-8359</identifier><identifier>DOI: 10.7717/peerj.10019</identifier><language>eng</language><publisher>PeerJ. Ltd</publisher><subject>Analysis ; COVID-19 ; Differential equations</subject><ispartof>PeerJ (San Francisco, CA), 2020-09, Vol.8</ispartof><rights>COPYRIGHT 2020 PeerJ. Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,861,27905,27906</link.rule.ids></links><search><creatorcontrib>Nave, OPhir</creatorcontrib><creatorcontrib>Hartuv, Israel</creatorcontrib><creatorcontrib>Shemesh, Uziel</creatorcontrib><title>SEIHRD mathematical model of Covid19-stability analysis using fast-slow decomposition</title><title>PeerJ (San Francisco, CA)</title><description>In general, a mathematical model that contains many linear/nonlinear differential equations, describing a phenomenon, does not have an explicit hierarchy of system variables. That is, the identification of the fast variables and the slow variables of the system is not explicitly clear. The decomposition of a system into fast and slow subsystems is usually based on intuitive ideas and knowledge of the mathematical model being investigated. In this study, we apply the singular perturbed vector field (SPVF) method to the COVID-19 mathematical model of to expose the hierarchy of the model. This decomposition enables us to rewrite the model in new coordinates in the form of fast and slow subsystems and, hence, to investigate only the fast subsystem with different asymptotic methods. In addition, this decomposition enables us to investigate the stability analysis of the model, which is important in case of COVID-19. We found the stable equilibrium points of the mathematical model and compared the results of the model with those reported by the Chinese authorities and found a fit of approximately 96 percent.</description><subject>Analysis</subject><subject>COVID-19</subject><subject>Differential equations</subject><issn>2167-8359</issn><issn>2167-8359</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNptj01LAzEQhoMoWGpP_oGA4G1rPppkcyy12kJB0HouaTJpU7Kb0myV_nsjeqjgDMw7DM87zCB0S8lQKaoe9gCH3ZASQvUF6jEqVVVzoS_P-ms0yHlHStRMkpr30PvbdD57fcSN6bZQSrAm4iY5iDh5PEkfwVFd5c6sQwzdCZvWxFMOGR9zaDfYm9xVOaZP7MCmZp9y6EJqb9CVNzHD4Ff7aPk0XU5m1eLleT4ZL6qNrllFtZVUGKKAS7Gu3cgCYd6Vy4gFDZ4LKYUdCQ5MEeG0U76AxFlPHKEjx_vo7mftxkRYhdan7mBsE7JdjSWXRApGWKGG_1AlHTTBphZ8KPM_hvszwxZM7LY5xeP3Z_kc_AJ8Nm7_</recordid><startdate>20200921</startdate><enddate>20200921</enddate><creator>Nave, OPhir</creator><creator>Hartuv, Israel</creator><creator>Shemesh, Uziel</creator><general>PeerJ. Ltd</general><scope/></search><sort><creationdate>20200921</creationdate><title>SEIHRD mathematical model of Covid19-stability analysis using fast-slow decomposition</title><author>Nave, OPhir ; Hartuv, Israel ; Shemesh, Uziel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g982-19c615a07e365b8d4ce02fd2600ce9ef35665c453e2705d9d7f3650dcf0d014d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>COVID-19</topic><topic>Differential equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nave, OPhir</creatorcontrib><creatorcontrib>Hartuv, Israel</creatorcontrib><creatorcontrib>Shemesh, Uziel</creatorcontrib><jtitle>PeerJ (San Francisco, CA)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nave, OPhir</au><au>Hartuv, Israel</au><au>Shemesh, Uziel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SEIHRD mathematical model of Covid19-stability analysis using fast-slow decomposition</atitle><jtitle>PeerJ (San Francisco, CA)</jtitle><date>2020-09-21</date><risdate>2020</risdate><volume>8</volume><issn>2167-8359</issn><eissn>2167-8359</eissn><abstract>In general, a mathematical model that contains many linear/nonlinear differential equations, describing a phenomenon, does not have an explicit hierarchy of system variables. That is, the identification of the fast variables and the slow variables of the system is not explicitly clear. The decomposition of a system into fast and slow subsystems is usually based on intuitive ideas and knowledge of the mathematical model being investigated. In this study, we apply the singular perturbed vector field (SPVF) method to the COVID-19 mathematical model of to expose the hierarchy of the model. This decomposition enables us to rewrite the model in new coordinates in the form of fast and slow subsystems and, hence, to investigate only the fast subsystem with different asymptotic methods. In addition, this decomposition enables us to investigate the stability analysis of the model, which is important in case of COVID-19. We found the stable equilibrium points of the mathematical model and compared the results of the model with those reported by the Chinese authorities and found a fit of approximately 96 percent.</abstract><pub>PeerJ. Ltd</pub><doi>10.7717/peerj.10019</doi></addata></record>
fulltext fulltext
identifier ISSN: 2167-8359
ispartof PeerJ (San Francisco, CA), 2020-09, Vol.8
issn 2167-8359
2167-8359
language eng
recordid cdi_gale_infotracmisc_A636065202
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Analysis
COVID-19
Differential equations
title SEIHRD mathematical model of Covid19-stability analysis using fast-slow decomposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T17%3A08%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SEIHRD%20mathematical%20model%20of%20Covid19-stability%20analysis%20using%20fast-slow%20decomposition&rft.jtitle=PeerJ%20(San%20Francisco,%20CA)&rft.au=Nave,%20OPhir&rft.date=2020-09-21&rft.volume=8&rft.issn=2167-8359&rft.eissn=2167-8359&rft_id=info:doi/10.7717/peerj.10019&rft_dat=%3Cgale%3EA636065202%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A636065202&rfr_iscdi=true