Particle characterization and toxicity in C57BL/6 mice following instillation of five different diesel exhaust particles designed to differ in physicochemical properties
Background Diesel exhaust is carcinogenic and exposure to diesel particles cause health effects. We investigated the toxicity of diesel exhaust particles designed to have varying physicochemical properties in order to attribute health effects to specific particle characteristics. Particles from thre...
Gespeichert in:
Veröffentlicht in: | Particle and fibre toxicology 2020-08, Vol.17 (1), p.1-25, Article 38 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 25 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Particle and fibre toxicology |
container_volume | 17 |
creator | Bendtsen, Katja Maria Gren, Louise Malmborg, Vilhelm Berg Shukla, Pravesh Chandra Tuner, Martin Essig, Yona J. Krais, Annette M. Clausen, Per Axel Berthing, Trine Loeschner, Katrin Jacobsen, Nicklas Raun Wolff, Henrik Pagels, Joakim Vogel, Ulla Birgitte |
description | Background Diesel exhaust is carcinogenic and exposure to diesel particles cause health effects. We investigated the toxicity of diesel exhaust particles designed to have varying physicochemical properties in order to attribute health effects to specific particle characteristics. Particles from three fuel types were compared at 13% engine intake O(2)concentration: MK1 ultra low sulfur diesel (DEP13) and the two renewable diesel fuels hydrotreated vegetable oil (HVO13) and rapeseed methyl ester (RME13). Additionally, diesel particles from MK1 ultra low sulfur diesel were generated at 9.7% (DEP9.7) and 17% (DEP17) intake O(2)concentration. We evaluated physicochemical properties and histopathological, inflammatory and genotoxic responses on day 1, 28, and 90 after single intratracheal instillation in mice compared to reference diesel particles and carbon black. Results Moderate variations were seen in physical properties for the five particles: primary particle diameter: 15-22 nm, specific surface area: 152-222 m(2)/g, and count median mobility diameter: 55-103 nm. Larger differences were found in chemical composition: organic carbon/total carbon ratio (0.12-0.60), polycyclic aromatic hydrocarbon content (1-27 mu g/mg) and acid-extractable metal content (0.9-16 mu g/mg). Intratracheal exposure to all five particles induced similar toxicological responses, with different potency. Lung particle retention was observed in DEP13 and HVO13 exposed mice on day 28 post-exposure, with less retention for the other fuel types. RME exposure induced limited response whereas the remaining particles induced dose-dependent inflammation and acute phase response on day 1. DEP13 induced acute phase response on day 28 and inflammation on day 90. DNA strand break levels were not increased as compared to vehicle, but were increased in lung and liver compared to blank filter extraction control. Neutrophil influx on day 1 correlated best with estimated deposited surface area, but also with elemental carbon, organic carbon and PAHs. DNA strand break levels in lung on day 28 and in liver on day 90 correlated with acellular particle-induced ROS. Conclusions We studied diesel exhaust particles designed to differ in physicochemical properties. Our study highlights specific surface area, elemental carbon content, PAHs and ROS-generating potential as physicochemical predictors of diesel particle toxicity. |
doi_str_mv | 10.1186/s12989-020-00369-9 |
format | Article |
fullrecord | <record><control><sourceid>gale_webof</sourceid><recordid>TN_cdi_gale_infotracmisc_A633075171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A633075171</galeid><doaj_id>oai_doaj_org_article_8cf50370daf748e79c4cb46d6e75619d</doaj_id><sourcerecordid>A633075171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c643t-33d99d78f8f16418113b3e942867c345167fed8659c0b934d08deec5f7e98e0b3</originalsourceid><addsrcrecordid>eNqNUluL1DAULqK46-of8Kngk0h3k-b-IuwOXhYGFC_PIU1OZrJ0mtpk9uI_8l-a2Q6rAz5IOc0h-S6c5KuqlxidYiz5WcKtkqpBLWoQIlw16lF1jAUljVRCPP6rP6qepXRVQEwy_LQ6Iq0QGGF-XP36bKYcbA-1XZvJ2AxT-GlyiENtBlfneBtsyHd1GOoFExfLM15vgoXax76PN2FYlZOUQ9_PnOhrH66hdsF7mGDIpYMEfQ23a7NNuR73dql2kMJqgJ3HHr4zGdd3Kdho11BsTF-PUxyhUCA9r5540yd4sV9Pqu_v331bfGyWnz5cLs6XjeWU5IYQp5QT0kuPOcUSY9IRULSVXFhCGebCg5OcKYs6RahD0gFY5gUoCagjJ9XlrOuiudLjFDZmutPRBH2_EaeV3s-gpfUMEYGc8YJKEMpS21HuOAjGsXJFazlrpRsYt92BWr8dS3WldAKtgLaok1YD9qCpklgbwVrtMGmtkJ1iForc21muaG3A2XK_k-kPVA9PhrDWq3itBcVU8LYIvNoLTPHHFlLWV3E7DeU6dUsJK4WF_INamTJkGHwsYnYTktXnnBAkGBa4oE7_gSqf2z1dHMCHsn9AeH1AKJgMt3lVcpH05dcvh9h2xtoppjSBfxgSI70Lv57Dr0v49X34tSqkNzPpBrrokw0wWHggIoTKo7DyLx3aWcj_Ry9Cvg_4Im6HTH4DqFIYHQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2435243178</pqid></control><display><type>article</type><title>Particle characterization and toxicity in C57BL/6 mice following instillation of five different diesel exhaust particles designed to differ in physicochemical properties</title><source>DOAJ Directory of Open Access Journals</source><source>SpringerNature Journals</source><source>SWEPUB Freely available online</source><source>PubMed Central Open Access</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Bendtsen, Katja Maria ; Gren, Louise ; Malmborg, Vilhelm Berg ; Shukla, Pravesh Chandra ; Tuner, Martin ; Essig, Yona J. ; Krais, Annette M. ; Clausen, Per Axel ; Berthing, Trine ; Loeschner, Katrin ; Jacobsen, Nicklas Raun ; Wolff, Henrik ; Pagels, Joakim ; Vogel, Ulla Birgitte</creator><creatorcontrib>Bendtsen, Katja Maria ; Gren, Louise ; Malmborg, Vilhelm Berg ; Shukla, Pravesh Chandra ; Tuner, Martin ; Essig, Yona J. ; Krais, Annette M. ; Clausen, Per Axel ; Berthing, Trine ; Loeschner, Katrin ; Jacobsen, Nicklas Raun ; Wolff, Henrik ; Pagels, Joakim ; Vogel, Ulla Birgitte</creatorcontrib><description>Background Diesel exhaust is carcinogenic and exposure to diesel particles cause health effects. We investigated the toxicity of diesel exhaust particles designed to have varying physicochemical properties in order to attribute health effects to specific particle characteristics. Particles from three fuel types were compared at 13% engine intake O(2)concentration: MK1 ultra low sulfur diesel (DEP13) and the two renewable diesel fuels hydrotreated vegetable oil (HVO13) and rapeseed methyl ester (RME13). Additionally, diesel particles from MK1 ultra low sulfur diesel were generated at 9.7% (DEP9.7) and 17% (DEP17) intake O(2)concentration. We evaluated physicochemical properties and histopathological, inflammatory and genotoxic responses on day 1, 28, and 90 after single intratracheal instillation in mice compared to reference diesel particles and carbon black. Results Moderate variations were seen in physical properties for the five particles: primary particle diameter: 15-22 nm, specific surface area: 152-222 m(2)/g, and count median mobility diameter: 55-103 nm. Larger differences were found in chemical composition: organic carbon/total carbon ratio (0.12-0.60), polycyclic aromatic hydrocarbon content (1-27 mu g/mg) and acid-extractable metal content (0.9-16 mu g/mg). Intratracheal exposure to all five particles induced similar toxicological responses, with different potency. Lung particle retention was observed in DEP13 and HVO13 exposed mice on day 28 post-exposure, with less retention for the other fuel types. RME exposure induced limited response whereas the remaining particles induced dose-dependent inflammation and acute phase response on day 1. DEP13 induced acute phase response on day 28 and inflammation on day 90. DNA strand break levels were not increased as compared to vehicle, but were increased in lung and liver compared to blank filter extraction control. Neutrophil influx on day 1 correlated best with estimated deposited surface area, but also with elemental carbon, organic carbon and PAHs. DNA strand break levels in lung on day 28 and in liver on day 90 correlated with acellular particle-induced ROS. Conclusions We studied diesel exhaust particles designed to differ in physicochemical properties. Our study highlights specific surface area, elemental carbon content, PAHs and ROS-generating potential as physicochemical predictors of diesel particle toxicity.</description><identifier>ISSN: 1743-8977</identifier><identifier>EISSN: 1743-8977</identifier><identifier>DOI: 10.1186/s12989-020-00369-9</identifier><identifier>PMID: 32771016</identifier><language>eng</language><publisher>LONDON: Springer Nature</publisher><subject>Arbetsmedicin och miljömedicin ; Aromatic hydrocarbons ; Black carbon ; Carbon ; Carbon black ; Carbon content ; Carcinogens ; Chemical composition ; Chemical properties ; Deoxyribonucleic acid ; Diesel emissions ; Diesel engines ; Diesel exhaust particles - ultrafine particles ; Diesel fuels ; DNA ; DNA damage ; Engine inlets ; Environmental Health and Occupational Health ; Exhaust gas recirculation ; Exposure ; Gases ; Genotoxicity ; Health aspects ; Health Sciences ; Hälsovetenskap ; Inflammation ; Intratracheal instillation ; Life Sciences & Biomedicine ; Liver ; Lungs ; Mass spectrometry ; Medical and Health Sciences ; Medicin och hälsovetenskap ; Metals ; Morphology ; Organic carbon ; Particle size ; Particulate pollutants ; Particulates ; Physical properties ; Physicochemical properties ; Polycyclic aromatic hydrocarbons ; Rapeseed ; Renewable diesel fuels ; Retention ; Risk factors ; Science & Technology ; Scientific imaging ; Specific surface ; Sulfur ; Surface area ; Testing ; Toxicity ; Toxicology ; Trachea ; Transmission electron microscopy ; Vegetable oils</subject><ispartof>Particle and fibre toxicology, 2020-08, Vol.17 (1), p.1-25, Article 38</ispartof><rights>COPYRIGHT 2020 BioMed Central Ltd.</rights><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>46</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000561500500001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c643t-33d99d78f8f16418113b3e942867c345167fed8659c0b934d08deec5f7e98e0b3</citedby><cites>FETCH-LOGICAL-c643t-33d99d78f8f16418113b3e942867c345167fed8659c0b934d08deec5f7e98e0b3</cites><orcidid>0000-0002-7423-3240 ; 0000-0001-6807-1524</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7414762/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7414762/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,553,728,781,785,865,886,2103,2115,27929,27930,28253,53796,53798</link.rule.ids><backlink>$$Uhttps://lup.lub.lu.se/record/9e420b8c-e1fe-4981-a752-d132c78b95ce$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Bendtsen, Katja Maria</creatorcontrib><creatorcontrib>Gren, Louise</creatorcontrib><creatorcontrib>Malmborg, Vilhelm Berg</creatorcontrib><creatorcontrib>Shukla, Pravesh Chandra</creatorcontrib><creatorcontrib>Tuner, Martin</creatorcontrib><creatorcontrib>Essig, Yona J.</creatorcontrib><creatorcontrib>Krais, Annette M.</creatorcontrib><creatorcontrib>Clausen, Per Axel</creatorcontrib><creatorcontrib>Berthing, Trine</creatorcontrib><creatorcontrib>Loeschner, Katrin</creatorcontrib><creatorcontrib>Jacobsen, Nicklas Raun</creatorcontrib><creatorcontrib>Wolff, Henrik</creatorcontrib><creatorcontrib>Pagels, Joakim</creatorcontrib><creatorcontrib>Vogel, Ulla Birgitte</creatorcontrib><title>Particle characterization and toxicity in C57BL/6 mice following instillation of five different diesel exhaust particles designed to differ in physicochemical properties</title><title>Particle and fibre toxicology</title><addtitle>PART FIBRE TOXICOL</addtitle><description>Background Diesel exhaust is carcinogenic and exposure to diesel particles cause health effects. We investigated the toxicity of diesel exhaust particles designed to have varying physicochemical properties in order to attribute health effects to specific particle characteristics. Particles from three fuel types were compared at 13% engine intake O(2)concentration: MK1 ultra low sulfur diesel (DEP13) and the two renewable diesel fuels hydrotreated vegetable oil (HVO13) and rapeseed methyl ester (RME13). Additionally, diesel particles from MK1 ultra low sulfur diesel were generated at 9.7% (DEP9.7) and 17% (DEP17) intake O(2)concentration. We evaluated physicochemical properties and histopathological, inflammatory and genotoxic responses on day 1, 28, and 90 after single intratracheal instillation in mice compared to reference diesel particles and carbon black. Results Moderate variations were seen in physical properties for the five particles: primary particle diameter: 15-22 nm, specific surface area: 152-222 m(2)/g, and count median mobility diameter: 55-103 nm. Larger differences were found in chemical composition: organic carbon/total carbon ratio (0.12-0.60), polycyclic aromatic hydrocarbon content (1-27 mu g/mg) and acid-extractable metal content (0.9-16 mu g/mg). Intratracheal exposure to all five particles induced similar toxicological responses, with different potency. Lung particle retention was observed in DEP13 and HVO13 exposed mice on day 28 post-exposure, with less retention for the other fuel types. RME exposure induced limited response whereas the remaining particles induced dose-dependent inflammation and acute phase response on day 1. DEP13 induced acute phase response on day 28 and inflammation on day 90. DNA strand break levels were not increased as compared to vehicle, but were increased in lung and liver compared to blank filter extraction control. Neutrophil influx on day 1 correlated best with estimated deposited surface area, but also with elemental carbon, organic carbon and PAHs. DNA strand break levels in lung on day 28 and in liver on day 90 correlated with acellular particle-induced ROS. Conclusions We studied diesel exhaust particles designed to differ in physicochemical properties. Our study highlights specific surface area, elemental carbon content, PAHs and ROS-generating potential as physicochemical predictors of diesel particle toxicity.</description><subject>Arbetsmedicin och miljömedicin</subject><subject>Aromatic hydrocarbons</subject><subject>Black carbon</subject><subject>Carbon</subject><subject>Carbon black</subject><subject>Carbon content</subject><subject>Carcinogens</subject><subject>Chemical composition</subject><subject>Chemical properties</subject><subject>Deoxyribonucleic acid</subject><subject>Diesel emissions</subject><subject>Diesel engines</subject><subject>Diesel exhaust particles - ultrafine particles</subject><subject>Diesel fuels</subject><subject>DNA</subject><subject>DNA damage</subject><subject>Engine inlets</subject><subject>Environmental Health and Occupational Health</subject><subject>Exhaust gas recirculation</subject><subject>Exposure</subject><subject>Gases</subject><subject>Genotoxicity</subject><subject>Health aspects</subject><subject>Health Sciences</subject><subject>Hälsovetenskap</subject><subject>Inflammation</subject><subject>Intratracheal instillation</subject><subject>Life Sciences & Biomedicine</subject><subject>Liver</subject><subject>Lungs</subject><subject>Mass spectrometry</subject><subject>Medical and Health Sciences</subject><subject>Medicin och hälsovetenskap</subject><subject>Metals</subject><subject>Morphology</subject><subject>Organic carbon</subject><subject>Particle size</subject><subject>Particulate pollutants</subject><subject>Particulates</subject><subject>Physical properties</subject><subject>Physicochemical properties</subject><subject>Polycyclic aromatic hydrocarbons</subject><subject>Rapeseed</subject><subject>Renewable diesel fuels</subject><subject>Retention</subject><subject>Risk factors</subject><subject>Science & Technology</subject><subject>Scientific imaging</subject><subject>Specific surface</subject><subject>Sulfur</subject><subject>Surface area</subject><subject>Testing</subject><subject>Toxicity</subject><subject>Toxicology</subject><subject>Trachea</subject><subject>Transmission electron microscopy</subject><subject>Vegetable oils</subject><issn>1743-8977</issn><issn>1743-8977</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>D8T</sourceid><sourceid>DOA</sourceid><recordid>eNqNUluL1DAULqK46-of8Kngk0h3k-b-IuwOXhYGFC_PIU1OZrJ0mtpk9uI_8l-a2Q6rAz5IOc0h-S6c5KuqlxidYiz5WcKtkqpBLWoQIlw16lF1jAUljVRCPP6rP6qepXRVQEwy_LQ6Iq0QGGF-XP36bKYcbA-1XZvJ2AxT-GlyiENtBlfneBtsyHd1GOoFExfLM15vgoXax76PN2FYlZOUQ9_PnOhrH66hdsF7mGDIpYMEfQ23a7NNuR73dql2kMJqgJ3HHr4zGdd3Kdho11BsTF-PUxyhUCA9r5540yd4sV9Pqu_v331bfGyWnz5cLs6XjeWU5IYQp5QT0kuPOcUSY9IRULSVXFhCGebCg5OcKYs6RahD0gFY5gUoCagjJ9XlrOuiudLjFDZmutPRBH2_EaeV3s-gpfUMEYGc8YJKEMpS21HuOAjGsXJFazlrpRsYt92BWr8dS3WldAKtgLaok1YD9qCpklgbwVrtMGmtkJ1iForc21muaG3A2XK_k-kPVA9PhrDWq3itBcVU8LYIvNoLTPHHFlLWV3E7DeU6dUsJK4WF_INamTJkGHwsYnYTktXnnBAkGBa4oE7_gSqf2z1dHMCHsn9AeH1AKJgMt3lVcpH05dcvh9h2xtoppjSBfxgSI70Lv57Dr0v49X34tSqkNzPpBrrokw0wWHggIoTKo7DyLx3aWcj_Ry9Cvg_4Im6HTH4DqFIYHQ</recordid><startdate>20200808</startdate><enddate>20200808</enddate><creator>Bendtsen, Katja Maria</creator><creator>Gren, Louise</creator><creator>Malmborg, Vilhelm Berg</creator><creator>Shukla, Pravesh Chandra</creator><creator>Tuner, Martin</creator><creator>Essig, Yona J.</creator><creator>Krais, Annette M.</creator><creator>Clausen, Per Axel</creator><creator>Berthing, Trine</creator><creator>Loeschner, Katrin</creator><creator>Jacobsen, Nicklas Raun</creator><creator>Wolff, Henrik</creator><creator>Pagels, Joakim</creator><creator>Vogel, Ulla Birgitte</creator><general>Springer Nature</general><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SR</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AGCHP</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D95</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7423-3240</orcidid><orcidid>https://orcid.org/0000-0001-6807-1524</orcidid></search><sort><creationdate>20200808</creationdate><title>Particle characterization and toxicity in C57BL/6 mice following instillation of five different diesel exhaust particles designed to differ in physicochemical properties</title><author>Bendtsen, Katja Maria ; Gren, Louise ; Malmborg, Vilhelm Berg ; Shukla, Pravesh Chandra ; Tuner, Martin ; Essig, Yona J. ; Krais, Annette M. ; Clausen, Per Axel ; Berthing, Trine ; Loeschner, Katrin ; Jacobsen, Nicklas Raun ; Wolff, Henrik ; Pagels, Joakim ; Vogel, Ulla Birgitte</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c643t-33d99d78f8f16418113b3e942867c345167fed8659c0b934d08deec5f7e98e0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Arbetsmedicin och miljömedicin</topic><topic>Aromatic hydrocarbons</topic><topic>Black carbon</topic><topic>Carbon</topic><topic>Carbon black</topic><topic>Carbon content</topic><topic>Carcinogens</topic><topic>Chemical composition</topic><topic>Chemical properties</topic><topic>Deoxyribonucleic acid</topic><topic>Diesel emissions</topic><topic>Diesel engines</topic><topic>Diesel exhaust particles - ultrafine particles</topic><topic>Diesel fuels</topic><topic>DNA</topic><topic>DNA damage</topic><topic>Engine inlets</topic><topic>Environmental Health and Occupational Health</topic><topic>Exhaust gas recirculation</topic><topic>Exposure</topic><topic>Gases</topic><topic>Genotoxicity</topic><topic>Health aspects</topic><topic>Health Sciences</topic><topic>Hälsovetenskap</topic><topic>Inflammation</topic><topic>Intratracheal instillation</topic><topic>Life Sciences & Biomedicine</topic><topic>Liver</topic><topic>Lungs</topic><topic>Mass spectrometry</topic><topic>Medical and Health Sciences</topic><topic>Medicin och hälsovetenskap</topic><topic>Metals</topic><topic>Morphology</topic><topic>Organic carbon</topic><topic>Particle size</topic><topic>Particulate pollutants</topic><topic>Particulates</topic><topic>Physical properties</topic><topic>Physicochemical properties</topic><topic>Polycyclic aromatic hydrocarbons</topic><topic>Rapeseed</topic><topic>Renewable diesel fuels</topic><topic>Retention</topic><topic>Risk factors</topic><topic>Science & Technology</topic><topic>Scientific imaging</topic><topic>Specific surface</topic><topic>Sulfur</topic><topic>Surface area</topic><topic>Testing</topic><topic>Toxicity</topic><topic>Toxicology</topic><topic>Trachea</topic><topic>Transmission electron microscopy</topic><topic>Vegetable oils</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bendtsen, Katja Maria</creatorcontrib><creatorcontrib>Gren, Louise</creatorcontrib><creatorcontrib>Malmborg, Vilhelm Berg</creatorcontrib><creatorcontrib>Shukla, Pravesh Chandra</creatorcontrib><creatorcontrib>Tuner, Martin</creatorcontrib><creatorcontrib>Essig, Yona J.</creatorcontrib><creatorcontrib>Krais, Annette M.</creatorcontrib><creatorcontrib>Clausen, Per Axel</creatorcontrib><creatorcontrib>Berthing, Trine</creatorcontrib><creatorcontrib>Loeschner, Katrin</creatorcontrib><creatorcontrib>Jacobsen, Nicklas Raun</creatorcontrib><creatorcontrib>Wolff, Henrik</creatorcontrib><creatorcontrib>Pagels, Joakim</creatorcontrib><creatorcontrib>Vogel, Ulla Birgitte</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SWEPUB Lunds universitet full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Lunds universitet</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Particle and fibre toxicology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bendtsen, Katja Maria</au><au>Gren, Louise</au><au>Malmborg, Vilhelm Berg</au><au>Shukla, Pravesh Chandra</au><au>Tuner, Martin</au><au>Essig, Yona J.</au><au>Krais, Annette M.</au><au>Clausen, Per Axel</au><au>Berthing, Trine</au><au>Loeschner, Katrin</au><au>Jacobsen, Nicklas Raun</au><au>Wolff, Henrik</au><au>Pagels, Joakim</au><au>Vogel, Ulla Birgitte</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Particle characterization and toxicity in C57BL/6 mice following instillation of five different diesel exhaust particles designed to differ in physicochemical properties</atitle><jtitle>Particle and fibre toxicology</jtitle><stitle>PART FIBRE TOXICOL</stitle><date>2020-08-08</date><risdate>2020</risdate><volume>17</volume><issue>1</issue><spage>1</spage><epage>25</epage><pages>1-25</pages><artnum>38</artnum><issn>1743-8977</issn><eissn>1743-8977</eissn><abstract>Background Diesel exhaust is carcinogenic and exposure to diesel particles cause health effects. We investigated the toxicity of diesel exhaust particles designed to have varying physicochemical properties in order to attribute health effects to specific particle characteristics. Particles from three fuel types were compared at 13% engine intake O(2)concentration: MK1 ultra low sulfur diesel (DEP13) and the two renewable diesel fuels hydrotreated vegetable oil (HVO13) and rapeseed methyl ester (RME13). Additionally, diesel particles from MK1 ultra low sulfur diesel were generated at 9.7% (DEP9.7) and 17% (DEP17) intake O(2)concentration. We evaluated physicochemical properties and histopathological, inflammatory and genotoxic responses on day 1, 28, and 90 after single intratracheal instillation in mice compared to reference diesel particles and carbon black. Results Moderate variations were seen in physical properties for the five particles: primary particle diameter: 15-22 nm, specific surface area: 152-222 m(2)/g, and count median mobility diameter: 55-103 nm. Larger differences were found in chemical composition: organic carbon/total carbon ratio (0.12-0.60), polycyclic aromatic hydrocarbon content (1-27 mu g/mg) and acid-extractable metal content (0.9-16 mu g/mg). Intratracheal exposure to all five particles induced similar toxicological responses, with different potency. Lung particle retention was observed in DEP13 and HVO13 exposed mice on day 28 post-exposure, with less retention for the other fuel types. RME exposure induced limited response whereas the remaining particles induced dose-dependent inflammation and acute phase response on day 1. DEP13 induced acute phase response on day 28 and inflammation on day 90. DNA strand break levels were not increased as compared to vehicle, but were increased in lung and liver compared to blank filter extraction control. Neutrophil influx on day 1 correlated best with estimated deposited surface area, but also with elemental carbon, organic carbon and PAHs. DNA strand break levels in lung on day 28 and in liver on day 90 correlated with acellular particle-induced ROS. Conclusions We studied diesel exhaust particles designed to differ in physicochemical properties. Our study highlights specific surface area, elemental carbon content, PAHs and ROS-generating potential as physicochemical predictors of diesel particle toxicity.</abstract><cop>LONDON</cop><pub>Springer Nature</pub><pmid>32771016</pmid><doi>10.1186/s12989-020-00369-9</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-7423-3240</orcidid><orcidid>https://orcid.org/0000-0001-6807-1524</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1743-8977 |
ispartof | Particle and fibre toxicology, 2020-08, Vol.17 (1), p.1-25, Article 38 |
issn | 1743-8977 1743-8977 |
language | eng |
recordid | cdi_gale_infotracmisc_A633075171 |
source | DOAJ Directory of Open Access Journals; SpringerNature Journals; SWEPUB Freely available online; PubMed Central Open Access; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central; Springer Nature OA/Free Journals; Free Full-Text Journals in Chemistry |
subjects | Arbetsmedicin och miljömedicin Aromatic hydrocarbons Black carbon Carbon Carbon black Carbon content Carcinogens Chemical composition Chemical properties Deoxyribonucleic acid Diesel emissions Diesel engines Diesel exhaust particles - ultrafine particles Diesel fuels DNA DNA damage Engine inlets Environmental Health and Occupational Health Exhaust gas recirculation Exposure Gases Genotoxicity Health aspects Health Sciences Hälsovetenskap Inflammation Intratracheal instillation Life Sciences & Biomedicine Liver Lungs Mass spectrometry Medical and Health Sciences Medicin och hälsovetenskap Metals Morphology Organic carbon Particle size Particulate pollutants Particulates Physical properties Physicochemical properties Polycyclic aromatic hydrocarbons Rapeseed Renewable diesel fuels Retention Risk factors Science & Technology Scientific imaging Specific surface Sulfur Surface area Testing Toxicity Toxicology Trachea Transmission electron microscopy Vegetable oils |
title | Particle characterization and toxicity in C57BL/6 mice following instillation of five different diesel exhaust particles designed to differ in physicochemical properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T18%3A58%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Particle%20characterization%20and%20toxicity%20in%20C57BL/6%20mice%20following%20instillation%20of%20five%20different%20diesel%20exhaust%20particles%20designed%20to%20differ%20in%20physicochemical%20properties&rft.jtitle=Particle%20and%20fibre%20toxicology&rft.au=Bendtsen,%20Katja%20Maria&rft.date=2020-08-08&rft.volume=17&rft.issue=1&rft.spage=1&rft.epage=25&rft.pages=1-25&rft.artnum=38&rft.issn=1743-8977&rft.eissn=1743-8977&rft_id=info:doi/10.1186/s12989-020-00369-9&rft_dat=%3Cgale_webof%3EA633075171%3C/gale_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2435243178&rft_id=info:pmid/32771016&rft_galeid=A633075171&rft_doaj_id=oai_doaj_org_article_8cf50370daf748e79c4cb46d6e75619d&rfr_iscdi=true |