Improving the Quality and Contrast of Image Details Using the Geodesic Distance Filter

—As a rule, modern methods of improving and contrasting image details are based on the edge-preserving filters or bilateral filters. However, the computational complexity of classic bilateral filters is proportional to the square of the number of pixels in the image and fast algorithms are not alway...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of communications technology & electronics 2020-06, Vol.65 (6), p.706-711
Hauptverfasser: Karnaukhov, V. N., Kober, V. I., Mozerov, M. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 711
container_issue 6
container_start_page 706
container_title Journal of communications technology & electronics
container_volume 65
creator Karnaukhov, V. N.
Kober, V. I.
Mozerov, M. G.
description —As a rule, modern methods of improving and contrasting image details are based on the edge-preserving filters or bilateral filters. However, the computational complexity of classic bilateral filters is proportional to the square of the number of pixels in the image and fast algorithms are not always efficient enough or the filtering result does not always match the result of the original filter. We propose replacing the classic bilateral filter with a geodesic distance filter, which also belongs to the class of convolution transformations that can improve visual perception of images using information about the edges of objects in the processed image. The convolution kernel based on the geodesic distance has several advantages, as it allows recursive computation and, therefore, fast image processing. We also propose a method for suppressing color artifacts by switching from the standard RGB representation to the HSV representation, which is more balanced with respect to the perception of human vision. The effectiveness of the proposed filter is compared using the illustrations to this article so that the reader can visually compare the qualities of various processing options.
doi_str_mv 10.1134/S1064226920060145
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_gale_infotracmisc_A630201047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A630201047</galeid><sourcerecordid>A630201047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-98b9a98dfed4e0ef0cd92e2df4d127e4941ca6a25f8311c62f113f7e01efe9f03</originalsourceid><addsrcrecordid>eNp1kV1rHCEUhofSQtM0P6B3Qq8KmeToqLtehs1HFwIhTdJbMc5xYpiPxOOU5t_XsC3p0hRBxfM8ynusqk8cDjhv5OEVBy2F0EYAaOBSval2uFKq1kot3pZ9KdfP9ffVB6J7gMZoaHaq7-vhIU0_4tixfIfscnZ9zE_MjS1bTWNOjjKbAlsPrkN2jNnFntgN_eHPcGqRomfHkbIbPbLT2GdMH6t3wfWEe7_X3erm9OR69bU-vzhbr47Oay9B59osb40zyzZgKxEwgG-NQNEG2XKxQGkk9047ocKy4dxrEUrYsEDgGNAEaHarz5t7S4jHGSnb-2lOY3nSCinU0qiS8oXqXI82jmEqwfwQydsj3YAADnJRqINXqDJaHKKfRgyxnG8JX7aEwmT8mTs3E9n11bdtdv8v9nYuHUQqE8XuLtNG2cL5BvdpIkoY7EOKg0tPloN9_nD7z4cXR2wcKuzYYXrpxf-lXwauqUc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2425895603</pqid></control><display><type>article</type><title>Improving the Quality and Contrast of Image Details Using the Geodesic Distance Filter</title><source>Springer Nature - Complete Springer Journals</source><creator>Karnaukhov, V. N. ; Kober, V. I. ; Mozerov, M. G.</creator><creatorcontrib>Karnaukhov, V. N. ; Kober, V. I. ; Mozerov, M. G.</creatorcontrib><description>—As a rule, modern methods of improving and contrasting image details are based on the edge-preserving filters or bilateral filters. However, the computational complexity of classic bilateral filters is proportional to the square of the number of pixels in the image and fast algorithms are not always efficient enough or the filtering result does not always match the result of the original filter. We propose replacing the classic bilateral filter with a geodesic distance filter, which also belongs to the class of convolution transformations that can improve visual perception of images using information about the edges of objects in the processed image. The convolution kernel based on the geodesic distance has several advantages, as it allows recursive computation and, therefore, fast image processing. We also propose a method for suppressing color artifacts by switching from the standard RGB representation to the HSV representation, which is more balanced with respect to the perception of human vision. The effectiveness of the proposed filter is compared using the illustrations to this article so that the reader can visually compare the qualities of various processing options.</description><identifier>ISSN: 1064-2269</identifier><identifier>EISSN: 1555-6557</identifier><identifier>DOI: 10.1134/S1064226920060145</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algorithms ; Communications Engineering ; Convolution ; Engineering ; Equipment and supplies ; Image contrast ; Image processing ; Image quality ; Mathematical Models and Computational Methods ; Medical imaging equipment ; Networks ; Quality management ; Recursive methods ; Representations ; Visual perception</subject><ispartof>Journal of communications technology &amp; electronics, 2020-06, Vol.65 (6), p.706-711</ispartof><rights>Pleiades Publishing, Inc. 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Pleiades Publishing, Inc. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c406t-98b9a98dfed4e0ef0cd92e2df4d127e4941ca6a25f8311c62f113f7e01efe9f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1064226920060145$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1064226920060145$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Karnaukhov, V. N.</creatorcontrib><creatorcontrib>Kober, V. I.</creatorcontrib><creatorcontrib>Mozerov, M. G.</creatorcontrib><title>Improving the Quality and Contrast of Image Details Using the Geodesic Distance Filter</title><title>Journal of communications technology &amp; electronics</title><addtitle>J. Commun. Technol. Electron</addtitle><description>—As a rule, modern methods of improving and contrasting image details are based on the edge-preserving filters or bilateral filters. However, the computational complexity of classic bilateral filters is proportional to the square of the number of pixels in the image and fast algorithms are not always efficient enough or the filtering result does not always match the result of the original filter. We propose replacing the classic bilateral filter with a geodesic distance filter, which also belongs to the class of convolution transformations that can improve visual perception of images using information about the edges of objects in the processed image. The convolution kernel based on the geodesic distance has several advantages, as it allows recursive computation and, therefore, fast image processing. We also propose a method for suppressing color artifacts by switching from the standard RGB representation to the HSV representation, which is more balanced with respect to the perception of human vision. The effectiveness of the proposed filter is compared using the illustrations to this article so that the reader can visually compare the qualities of various processing options.</description><subject>Algorithms</subject><subject>Communications Engineering</subject><subject>Convolution</subject><subject>Engineering</subject><subject>Equipment and supplies</subject><subject>Image contrast</subject><subject>Image processing</subject><subject>Image quality</subject><subject>Mathematical Models and Computational Methods</subject><subject>Medical imaging equipment</subject><subject>Networks</subject><subject>Quality management</subject><subject>Recursive methods</subject><subject>Representations</subject><subject>Visual perception</subject><issn>1064-2269</issn><issn>1555-6557</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNp1kV1rHCEUhofSQtM0P6B3Qq8KmeToqLtehs1HFwIhTdJbMc5xYpiPxOOU5t_XsC3p0hRBxfM8ynusqk8cDjhv5OEVBy2F0EYAaOBSval2uFKq1kot3pZ9KdfP9ffVB6J7gMZoaHaq7-vhIU0_4tixfIfscnZ9zE_MjS1bTWNOjjKbAlsPrkN2jNnFntgN_eHPcGqRomfHkbIbPbLT2GdMH6t3wfWEe7_X3erm9OR69bU-vzhbr47Oay9B59osb40zyzZgKxEwgG-NQNEG2XKxQGkk9047ocKy4dxrEUrYsEDgGNAEaHarz5t7S4jHGSnb-2lOY3nSCinU0qiS8oXqXI82jmEqwfwQydsj3YAADnJRqINXqDJaHKKfRgyxnG8JX7aEwmT8mTs3E9n11bdtdv8v9nYuHUQqE8XuLtNG2cL5BvdpIkoY7EOKg0tPloN9_nD7z4cXR2wcKuzYYXrpxf-lXwauqUc</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Karnaukhov, V. N.</creator><creator>Kober, V. I.</creator><creator>Mozerov, M. G.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>ISR</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20200601</creationdate><title>Improving the Quality and Contrast of Image Details Using the Geodesic Distance Filter</title><author>Karnaukhov, V. N. ; Kober, V. I. ; Mozerov, M. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-98b9a98dfed4e0ef0cd92e2df4d127e4941ca6a25f8311c62f113f7e01efe9f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Communications Engineering</topic><topic>Convolution</topic><topic>Engineering</topic><topic>Equipment and supplies</topic><topic>Image contrast</topic><topic>Image processing</topic><topic>Image quality</topic><topic>Mathematical Models and Computational Methods</topic><topic>Medical imaging equipment</topic><topic>Networks</topic><topic>Quality management</topic><topic>Recursive methods</topic><topic>Representations</topic><topic>Visual perception</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karnaukhov, V. N.</creatorcontrib><creatorcontrib>Kober, V. I.</creatorcontrib><creatorcontrib>Mozerov, M. G.</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Science</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of communications technology &amp; electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karnaukhov, V. N.</au><au>Kober, V. I.</au><au>Mozerov, M. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving the Quality and Contrast of Image Details Using the Geodesic Distance Filter</atitle><jtitle>Journal of communications technology &amp; electronics</jtitle><stitle>J. Commun. Technol. Electron</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>65</volume><issue>6</issue><spage>706</spage><epage>711</epage><pages>706-711</pages><issn>1064-2269</issn><eissn>1555-6557</eissn><abstract>—As a rule, modern methods of improving and contrasting image details are based on the edge-preserving filters or bilateral filters. However, the computational complexity of classic bilateral filters is proportional to the square of the number of pixels in the image and fast algorithms are not always efficient enough or the filtering result does not always match the result of the original filter. We propose replacing the classic bilateral filter with a geodesic distance filter, which also belongs to the class of convolution transformations that can improve visual perception of images using information about the edges of objects in the processed image. The convolution kernel based on the geodesic distance has several advantages, as it allows recursive computation and, therefore, fast image processing. We also propose a method for suppressing color artifacts by switching from the standard RGB representation to the HSV representation, which is more balanced with respect to the perception of human vision. The effectiveness of the proposed filter is compared using the illustrations to this article so that the reader can visually compare the qualities of various processing options.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1064226920060145</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-2269
ispartof Journal of communications technology & electronics, 2020-06, Vol.65 (6), p.706-711
issn 1064-2269
1555-6557
language eng
recordid cdi_gale_infotracmisc_A630201047
source Springer Nature - Complete Springer Journals
subjects Algorithms
Communications Engineering
Convolution
Engineering
Equipment and supplies
Image contrast
Image processing
Image quality
Mathematical Models and Computational Methods
Medical imaging equipment
Networks
Quality management
Recursive methods
Representations
Visual perception
title Improving the Quality and Contrast of Image Details Using the Geodesic Distance Filter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A26%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20the%20Quality%20and%20Contrast%20of%20Image%20Details%20Using%20the%20Geodesic%20Distance%20Filter&rft.jtitle=Journal%20of%20communications%20technology%20&%20electronics&rft.au=Karnaukhov,%20V.%20N.&rft.date=2020-06-01&rft.volume=65&rft.issue=6&rft.spage=706&rft.epage=711&rft.pages=706-711&rft.issn=1064-2269&rft.eissn=1555-6557&rft_id=info:doi/10.1134/S1064226920060145&rft_dat=%3Cgale_proqu%3EA630201047%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2425895603&rft_id=info:pmid/&rft_galeid=A630201047&rfr_iscdi=true