Predation patterns across states of landscape fragmentation can shift with seasonal transitions
Nested scales of habitat heterogeneity may independently or synergistically influence faunal interactions. Fragmentation effects (i.e., the breaking apart of landscapes) and edge effects (i.e., ecological differences between edges and interiors of patches, nested within landscapes) are distinct yet...
Gespeichert in:
Veröffentlicht in: | Oecologia 2020-06, Vol.193 (2), p.403-413 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 413 |
---|---|
container_issue | 2 |
container_start_page | 403 |
container_title | Oecologia |
container_volume | 193 |
creator | Yarnall, Amy H. Fodrie, F. Joel |
description | Nested scales of habitat heterogeneity may independently or synergistically influence faunal interactions. Fragmentation effects (i.e., the breaking apart of landscapes) and edge effects (i.e., ecological differences between edges and interiors of patches, nested within landscapes) are distinct yet related ecological concepts, linked mathematically by the habitat edge-to-area ratio. Our study quantified the separate and interactive effects of fragmentation and edge on predation using temperate seagrass. To assess how predation and generalized consumption were influenced by fragmentation state (i.e., continuous, fragmented), and proximity to edge (i.e., edges, interiors), we used tethering assays with two prey-items: juvenile crabs, Callinectes sapidus, and “squidpops” (dried squid mantle). We also investigated whether faunal densities (a proxy for consumption potential) and temperature (a proxy for a broad suite of seasonal changes) correlated with predation across landscapes. Results showed fragmentation state affected predation (i.e., crab) mortality, yet edge effects did not. Moreover, the directionality of fragmentation effects shifted across a temperature/seasonal gradient. Predation mortality more than doubled in continuous landscapes amidst temperature increases, surpassing initially higher mortality in fragmented landscapes, which did not systematically vary with temperature. This mortality magnitude “flip” matched spatiotemporal trends in faunal densities between continuous and fragmented meadows. Consumption rates of both prey-items increased alongside temperature and neither demonstrated edge effects. However, crabs showed fragmentation effects not seen with squidpops, suggesting differing foraging strategies used by consumers of these prey-items. We conclude that fragmentation and edge effects have dynamic influences on temperate predator–prey interactions, as faunal favorability of habitat heterogeneity can “flip” temporally. |
doi_str_mv | 10.1007/s00442-020-04675-z |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_gale_infotracmisc_A627919877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A627919877</galeid><jstor_id>48696098</jstor_id><sourcerecordid>A627919877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c519t-2171a367b17c7d7d0780d390aabe3c2817ccd1997ee8f804b14ac00bdbc646f03</originalsourceid><addsrcrecordid>eNqNkm1rFDEQgBdR7Fn9A4Kw4JeKbJ1kk03ysRy-FAqKL59DNpu95thLzkyOan-9uVtpORGRfEgYnmeYyUxVPSdwTgDEGwRgjDZAoQHWCd7cPqgWhLW0IapVD6sFAFWN5EydVE8Q1wCEEc4fVyct5bzjql1U-lNyg8k-hnprcnYpYG1siog1ZpMd1nGsJxMGtGbr6jGZ1caFPBvWhBqv_ZjrG5-va3QGYzBTnZMJ6PcIPq0ejWZC9-z3fVp9e_f26_JDc_Xx_eXy4qqxnKjcUCKIaTvRE2HFIAYQEoZWgTG9ay2VJWwHopRwTo4SWE-YsQD90NuOdSO0p9XZnHeb4vedw6w3Hq2bSuku7lDT0jmVkhBa0Jd_oOu4S6XuAyUkpYrLe2plJqd9GGPpyu6T6ouOCkWUFKJQ53-hyhncxtsY3OhL_Eh4dSQUJrsfeWV2iPryy-djls7sYR7JjXqb_Makn5qA3m-AnjdAlw3Qhw3Qt0WSs3Tj-jii9S5YdycCAGegOKjyArL08ySXcRdyUV__v1rodqaxEGHl0v03_rO8F7O1xhzTXXImO9WBku0vmoXbQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2417822958</pqid></control><display><type>article</type><title>Predation patterns across states of landscape fragmentation can shift with seasonal transitions</title><source>JSTOR Archive Collection A-Z Listing</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>SpringerNature Journals</source><creator>Yarnall, Amy H. ; Fodrie, F. Joel</creator><creatorcontrib>Yarnall, Amy H. ; Fodrie, F. Joel</creatorcontrib><description>Nested scales of habitat heterogeneity may independently or synergistically influence faunal interactions. Fragmentation effects (i.e., the breaking apart of landscapes) and edge effects (i.e., ecological differences between edges and interiors of patches, nested within landscapes) are distinct yet related ecological concepts, linked mathematically by the habitat edge-to-area ratio. Our study quantified the separate and interactive effects of fragmentation and edge on predation using temperate seagrass. To assess how predation and generalized consumption were influenced by fragmentation state (i.e., continuous, fragmented), and proximity to edge (i.e., edges, interiors), we used tethering assays with two prey-items: juvenile crabs, Callinectes sapidus, and “squidpops” (dried squid mantle). We also investigated whether faunal densities (a proxy for consumption potential) and temperature (a proxy for a broad suite of seasonal changes) correlated with predation across landscapes. Results showed fragmentation state affected predation (i.e., crab) mortality, yet edge effects did not. Moreover, the directionality of fragmentation effects shifted across a temperature/seasonal gradient. Predation mortality more than doubled in continuous landscapes amidst temperature increases, surpassing initially higher mortality in fragmented landscapes, which did not systematically vary with temperature. This mortality magnitude “flip” matched spatiotemporal trends in faunal densities between continuous and fragmented meadows. Consumption rates of both prey-items increased alongside temperature and neither demonstrated edge effects. However, crabs showed fragmentation effects not seen with squidpops, suggesting differing foraging strategies used by consumers of these prey-items. We conclude that fragmentation and edge effects have dynamic influences on temperate predator–prey interactions, as faunal favorability of habitat heterogeneity can “flip” temporally.</description><identifier>ISSN: 0029-8549</identifier><identifier>EISSN: 1432-1939</identifier><identifier>DOI: 10.1007/s00442-020-04675-z</identifier><identifier>PMID: 32556593</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Science + Business Media</publisher><subject>Biomedical and Life Sciences ; COMMUNITY ECOLOGY – ORIGINAL RESEARCH ; Consumption ; Crustaceans ; Decapoda ; Ecological effects ; Ecology ; Edge effect ; Environmental Sciences & Ecology ; Foraging ; Foraging habitats ; Fragmentation ; Habitats ; Heterogeneity ; Hydrology/Water Resources ; Interspecific relationships ; Life Sciences ; Life Sciences & Biomedicine ; Marine crustaceans ; Marine molluscs ; Meadows ; Mortality ; Plant Sciences ; Predation ; Predation (Biology) ; Predator-prey interactions ; Predators ; Prey ; Science & Technology ; Sea grasses ; Seasonal variation ; Seasonal variations ; Temperature ; Tethering</subject><ispartof>Oecologia, 2020-06, Vol.193 (2), p.403-413</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>13</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000540950900001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c519t-2171a367b17c7d7d0780d390aabe3c2817ccd1997ee8f804b14ac00bdbc646f03</citedby><cites>FETCH-LOGICAL-c519t-2171a367b17c7d7d0780d390aabe3c2817ccd1997ee8f804b14ac00bdbc646f03</cites><orcidid>0000-0001-7804-3148</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48696098$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/48696098$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,782,786,805,27933,27934,28257,41497,42566,51328,58026,58259</link.rule.ids></links><search><creatorcontrib>Yarnall, Amy H.</creatorcontrib><creatorcontrib>Fodrie, F. Joel</creatorcontrib><title>Predation patterns across states of landscape fragmentation can shift with seasonal transitions</title><title>Oecologia</title><addtitle>Oecologia</addtitle><addtitle>OECOLOGIA</addtitle><description>Nested scales of habitat heterogeneity may independently or synergistically influence faunal interactions. Fragmentation effects (i.e., the breaking apart of landscapes) and edge effects (i.e., ecological differences between edges and interiors of patches, nested within landscapes) are distinct yet related ecological concepts, linked mathematically by the habitat edge-to-area ratio. Our study quantified the separate and interactive effects of fragmentation and edge on predation using temperate seagrass. To assess how predation and generalized consumption were influenced by fragmentation state (i.e., continuous, fragmented), and proximity to edge (i.e., edges, interiors), we used tethering assays with two prey-items: juvenile crabs, Callinectes sapidus, and “squidpops” (dried squid mantle). We also investigated whether faunal densities (a proxy for consumption potential) and temperature (a proxy for a broad suite of seasonal changes) correlated with predation across landscapes. Results showed fragmentation state affected predation (i.e., crab) mortality, yet edge effects did not. Moreover, the directionality of fragmentation effects shifted across a temperature/seasonal gradient. Predation mortality more than doubled in continuous landscapes amidst temperature increases, surpassing initially higher mortality in fragmented landscapes, which did not systematically vary with temperature. This mortality magnitude “flip” matched spatiotemporal trends in faunal densities between continuous and fragmented meadows. Consumption rates of both prey-items increased alongside temperature and neither demonstrated edge effects. However, crabs showed fragmentation effects not seen with squidpops, suggesting differing foraging strategies used by consumers of these prey-items. We conclude that fragmentation and edge effects have dynamic influences on temperate predator–prey interactions, as faunal favorability of habitat heterogeneity can “flip” temporally.</description><subject>Biomedical and Life Sciences</subject><subject>COMMUNITY ECOLOGY – ORIGINAL RESEARCH</subject><subject>Consumption</subject><subject>Crustaceans</subject><subject>Decapoda</subject><subject>Ecological effects</subject><subject>Ecology</subject><subject>Edge effect</subject><subject>Environmental Sciences & Ecology</subject><subject>Foraging</subject><subject>Foraging habitats</subject><subject>Fragmentation</subject><subject>Habitats</subject><subject>Heterogeneity</subject><subject>Hydrology/Water Resources</subject><subject>Interspecific relationships</subject><subject>Life Sciences</subject><subject>Life Sciences & Biomedicine</subject><subject>Marine crustaceans</subject><subject>Marine molluscs</subject><subject>Meadows</subject><subject>Mortality</subject><subject>Plant Sciences</subject><subject>Predation</subject><subject>Predation (Biology)</subject><subject>Predator-prey interactions</subject><subject>Predators</subject><subject>Prey</subject><subject>Science & Technology</subject><subject>Sea grasses</subject><subject>Seasonal variation</subject><subject>Seasonal variations</subject><subject>Temperature</subject><subject>Tethering</subject><issn>0029-8549</issn><issn>1432-1939</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkm1rFDEQgBdR7Fn9A4Kw4JeKbJ1kk03ysRy-FAqKL59DNpu95thLzkyOan-9uVtpORGRfEgYnmeYyUxVPSdwTgDEGwRgjDZAoQHWCd7cPqgWhLW0IapVD6sFAFWN5EydVE8Q1wCEEc4fVyct5bzjql1U-lNyg8k-hnprcnYpYG1siog1ZpMd1nGsJxMGtGbr6jGZ1caFPBvWhBqv_ZjrG5-va3QGYzBTnZMJ6PcIPq0ejWZC9-z3fVp9e_f26_JDc_Xx_eXy4qqxnKjcUCKIaTvRE2HFIAYQEoZWgTG9ay2VJWwHopRwTo4SWE-YsQD90NuOdSO0p9XZnHeb4vedw6w3Hq2bSuku7lDT0jmVkhBa0Jd_oOu4S6XuAyUkpYrLe2plJqd9GGPpyu6T6ouOCkWUFKJQ53-hyhncxtsY3OhL_Eh4dSQUJrsfeWV2iPryy-djls7sYR7JjXqb_Makn5qA3m-AnjdAlw3Qhw3Qt0WSs3Tj-jii9S5YdycCAGegOKjyArL08ySXcRdyUV__v1rodqaxEGHl0v03_rO8F7O1xhzTXXImO9WBku0vmoXbQQ</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Yarnall, Amy H.</creator><creator>Fodrie, F. Joel</creator><general>Springer Science + Business Media</general><general>Springer Berlin Heidelberg</general><general>Springer Nature</general><general>Springer</general><general>Springer Nature B.V</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7TN</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>H95</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7804-3148</orcidid></search><sort><creationdate>20200601</creationdate><title>Predation patterns across states of landscape fragmentation can shift with seasonal transitions</title><author>Yarnall, Amy H. ; Fodrie, F. Joel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c519t-2171a367b17c7d7d0780d390aabe3c2817ccd1997ee8f804b14ac00bdbc646f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biomedical and Life Sciences</topic><topic>COMMUNITY ECOLOGY – ORIGINAL RESEARCH</topic><topic>Consumption</topic><topic>Crustaceans</topic><topic>Decapoda</topic><topic>Ecological effects</topic><topic>Ecology</topic><topic>Edge effect</topic><topic>Environmental Sciences & Ecology</topic><topic>Foraging</topic><topic>Foraging habitats</topic><topic>Fragmentation</topic><topic>Habitats</topic><topic>Heterogeneity</topic><topic>Hydrology/Water Resources</topic><topic>Interspecific relationships</topic><topic>Life Sciences</topic><topic>Life Sciences & Biomedicine</topic><topic>Marine crustaceans</topic><topic>Marine molluscs</topic><topic>Meadows</topic><topic>Mortality</topic><topic>Plant Sciences</topic><topic>Predation</topic><topic>Predation (Biology)</topic><topic>Predator-prey interactions</topic><topic>Predators</topic><topic>Prey</topic><topic>Science & Technology</topic><topic>Sea grasses</topic><topic>Seasonal variation</topic><topic>Seasonal variations</topic><topic>Temperature</topic><topic>Tethering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yarnall, Amy H.</creatorcontrib><creatorcontrib>Fodrie, F. Joel</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Oecologia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yarnall, Amy H.</au><au>Fodrie, F. Joel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predation patterns across states of landscape fragmentation can shift with seasonal transitions</atitle><jtitle>Oecologia</jtitle><stitle>Oecologia</stitle><stitle>OECOLOGIA</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>193</volume><issue>2</issue><spage>403</spage><epage>413</epage><pages>403-413</pages><issn>0029-8549</issn><eissn>1432-1939</eissn><abstract>Nested scales of habitat heterogeneity may independently or synergistically influence faunal interactions. Fragmentation effects (i.e., the breaking apart of landscapes) and edge effects (i.e., ecological differences between edges and interiors of patches, nested within landscapes) are distinct yet related ecological concepts, linked mathematically by the habitat edge-to-area ratio. Our study quantified the separate and interactive effects of fragmentation and edge on predation using temperate seagrass. To assess how predation and generalized consumption were influenced by fragmentation state (i.e., continuous, fragmented), and proximity to edge (i.e., edges, interiors), we used tethering assays with two prey-items: juvenile crabs, Callinectes sapidus, and “squidpops” (dried squid mantle). We also investigated whether faunal densities (a proxy for consumption potential) and temperature (a proxy for a broad suite of seasonal changes) correlated with predation across landscapes. Results showed fragmentation state affected predation (i.e., crab) mortality, yet edge effects did not. Moreover, the directionality of fragmentation effects shifted across a temperature/seasonal gradient. Predation mortality more than doubled in continuous landscapes amidst temperature increases, surpassing initially higher mortality in fragmented landscapes, which did not systematically vary with temperature. This mortality magnitude “flip” matched spatiotemporal trends in faunal densities between continuous and fragmented meadows. Consumption rates of both prey-items increased alongside temperature and neither demonstrated edge effects. However, crabs showed fragmentation effects not seen with squidpops, suggesting differing foraging strategies used by consumers of these prey-items. We conclude that fragmentation and edge effects have dynamic influences on temperate predator–prey interactions, as faunal favorability of habitat heterogeneity can “flip” temporally.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Science + Business Media</pub><pmid>32556593</pmid><doi>10.1007/s00442-020-04675-z</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7804-3148</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-8549 |
ispartof | Oecologia, 2020-06, Vol.193 (2), p.403-413 |
issn | 0029-8549 1432-1939 |
language | eng |
recordid | cdi_gale_infotracmisc_A627919877 |
source | JSTOR Archive Collection A-Z Listing; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; SpringerNature Journals |
subjects | Biomedical and Life Sciences COMMUNITY ECOLOGY – ORIGINAL RESEARCH Consumption Crustaceans Decapoda Ecological effects Ecology Edge effect Environmental Sciences & Ecology Foraging Foraging habitats Fragmentation Habitats Heterogeneity Hydrology/Water Resources Interspecific relationships Life Sciences Life Sciences & Biomedicine Marine crustaceans Marine molluscs Meadows Mortality Plant Sciences Predation Predation (Biology) Predator-prey interactions Predators Prey Science & Technology Sea grasses Seasonal variation Seasonal variations Temperature Tethering |
title | Predation patterns across states of landscape fragmentation can shift with seasonal transitions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T00%3A00%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predation%20patterns%20across%20states%20of%20landscape%20fragmentation%20can%20shift%20with%20seasonal%20transitions&rft.jtitle=Oecologia&rft.au=Yarnall,%20Amy%20H.&rft.date=2020-06-01&rft.volume=193&rft.issue=2&rft.spage=403&rft.epage=413&rft.pages=403-413&rft.issn=0029-8549&rft.eissn=1432-1939&rft_id=info:doi/10.1007/s00442-020-04675-z&rft_dat=%3Cgale_proqu%3EA627919877%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2417822958&rft_id=info:pmid/32556593&rft_galeid=A627919877&rft_jstor_id=48696098&rfr_iscdi=true |