A bulk-surface reaction-diffusion system for cell polarization

We propose a model for cell polarization as a response to an external signal which results in a system of PDEs for different variants of a protein on the cell surface and interior respectively. We study stationary states of this model in certain parameter regimes in which several reaction rates on t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Interfaces and free boundaries 2020-01, Vol.22 (1), p.85-117
Hauptverfasser: Niethammer, Barbara, Röger, Matthias, Velázquez, Juan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 117
container_issue 1
container_start_page 85
container_title Interfaces and free boundaries
container_volume 22
creator Niethammer, Barbara
Röger, Matthias
Velázquez, Juan
description We propose a model for cell polarization as a response to an external signal which results in a system of PDEs for different variants of a protein on the cell surface and interior respectively. We study stationary states of this model in certain parameter regimes in which several reaction rates on the membrane as well as the diffusion coefficient within the cell are large. It turns out that in suitable scaling limits steady states converge to solutions of some obstacle type problems. For these limiting problems we prove the onset of polarization if the total mass of protein is sufficiently small. For some variants we can even characterize precisely the critical mass for which polarization occurs.
doi_str_mv 10.4171/IFB/433
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracmisc_A622718742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A622718742</galeid><sourcerecordid>A622718742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-64cc89c1616c2250c4caa37373c5e689704186b3a42bde6bb8669e0bbfefdfae3</originalsourceid><addsrcrecordid>eNptkE9LAzEQxYMoWKv4FRY8eNo22aTZ3YtQS6uFghc9h2R2Iqn7pyS7h_rpTa1UBJnDPIbfG2YeIbeMTgTL2XS9epwKzs_IiAnJ07LM2flJS35JrkLYUkpLRvmIPMwTM9QfaRi81YCJRw2969q0ctYOIaok7EOPTWI7nwDWdbLrau3dpz5g1-TC6jrgzU8fk7fV8nXxnG5entaL-SYFntE-lQKgKIFJJiHLZhQEaM3zWDBDWZQ5FayQhmuRmQqlMYWUJVJjLNrKauRjcnfc-65rVK61Xe81NC6Amsssy1mRiyxSk3-oWBU2DroWrYvzP4b7owF8F4JHq3beNdrvFaPqkKZy1qiY5u8B2AS17QbfxndPVMz8m_oCBgBxgw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A bulk-surface reaction-diffusion system for cell polarization</title><source>European Mathematical Society Publishing House</source><creator>Niethammer, Barbara ; Röger, Matthias ; Velázquez, Juan</creator><creatorcontrib>Niethammer, Barbara ; Röger, Matthias ; Velázquez, Juan</creatorcontrib><description>We propose a model for cell polarization as a response to an external signal which results in a system of PDEs for different variants of a protein on the cell surface and interior respectively. We study stationary states of this model in certain parameter regimes in which several reaction rates on the membrane as well as the diffusion coefficient within the cell are large. It turns out that in suitable scaling limits steady states converge to solutions of some obstacle type problems. For these limiting problems we prove the onset of polarization if the total mass of protein is sufficiently small. For some variants we can even characterize precisely the critical mass for which polarization occurs.</description><identifier>ISSN: 1463-9963</identifier><identifier>EISSN: 1463-9971</identifier><identifier>DOI: 10.4171/IFB/433</identifier><language>eng</language><publisher>Zuerich, Switzerland: European Mathematical Society Publishing House</publisher><subject>Biology and other natural sciences ; Partial differential equations ; Surface science</subject><ispartof>Interfaces and free boundaries, 2020-01, Vol.22 (1), p.85-117</ispartof><rights>European Mathematical Society</rights><rights>COPYRIGHT 2020 European Mathematical Society Publishing House</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-64cc89c1616c2250c4caa37373c5e689704186b3a42bde6bb8669e0bbfefdfae3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,24034,27905,27906</link.rule.ids></links><search><creatorcontrib>Niethammer, Barbara</creatorcontrib><creatorcontrib>Röger, Matthias</creatorcontrib><creatorcontrib>Velázquez, Juan</creatorcontrib><title>A bulk-surface reaction-diffusion system for cell polarization</title><title>Interfaces and free boundaries</title><addtitle>Interfaces Free Bound</addtitle><description>We propose a model for cell polarization as a response to an external signal which results in a system of PDEs for different variants of a protein on the cell surface and interior respectively. We study stationary states of this model in certain parameter regimes in which several reaction rates on the membrane as well as the diffusion coefficient within the cell are large. It turns out that in suitable scaling limits steady states converge to solutions of some obstacle type problems. For these limiting problems we prove the onset of polarization if the total mass of protein is sufficiently small. For some variants we can even characterize precisely the critical mass for which polarization occurs.</description><subject>Biology and other natural sciences</subject><subject>Partial differential equations</subject><subject>Surface science</subject><issn>1463-9963</issn><issn>1463-9971</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNptkE9LAzEQxYMoWKv4FRY8eNo22aTZ3YtQS6uFghc9h2R2Iqn7pyS7h_rpTa1UBJnDPIbfG2YeIbeMTgTL2XS9epwKzs_IiAnJ07LM2flJS35JrkLYUkpLRvmIPMwTM9QfaRi81YCJRw2969q0ctYOIaok7EOPTWI7nwDWdbLrau3dpz5g1-TC6jrgzU8fk7fV8nXxnG5entaL-SYFntE-lQKgKIFJJiHLZhQEaM3zWDBDWZQ5FayQhmuRmQqlMYWUJVJjLNrKauRjcnfc-65rVK61Xe81NC6Amsssy1mRiyxSk3-oWBU2DroWrYvzP4b7owF8F4JHq3beNdrvFaPqkKZy1qiY5u8B2AS17QbfxndPVMz8m_oCBgBxgw</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Niethammer, Barbara</creator><creator>Röger, Matthias</creator><creator>Velázquez, Juan</creator><general>European Mathematical Society Publishing House</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200101</creationdate><title>A bulk-surface reaction-diffusion system for cell polarization</title><author>Niethammer, Barbara ; Röger, Matthias ; Velázquez, Juan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-64cc89c1616c2250c4caa37373c5e689704186b3a42bde6bb8669e0bbfefdfae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biology and other natural sciences</topic><topic>Partial differential equations</topic><topic>Surface science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niethammer, Barbara</creatorcontrib><creatorcontrib>Röger, Matthias</creatorcontrib><creatorcontrib>Velázquez, Juan</creatorcontrib><collection>CrossRef</collection><jtitle>Interfaces and free boundaries</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niethammer, Barbara</au><au>Röger, Matthias</au><au>Velázquez, Juan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A bulk-surface reaction-diffusion system for cell polarization</atitle><jtitle>Interfaces and free boundaries</jtitle><addtitle>Interfaces Free Bound</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>22</volume><issue>1</issue><spage>85</spage><epage>117</epage><pages>85-117</pages><issn>1463-9963</issn><eissn>1463-9971</eissn><abstract>We propose a model for cell polarization as a response to an external signal which results in a system of PDEs for different variants of a protein on the cell surface and interior respectively. We study stationary states of this model in certain parameter regimes in which several reaction rates on the membrane as well as the diffusion coefficient within the cell are large. It turns out that in suitable scaling limits steady states converge to solutions of some obstacle type problems. For these limiting problems we prove the onset of polarization if the total mass of protein is sufficiently small. For some variants we can even characterize precisely the critical mass for which polarization occurs.</abstract><cop>Zuerich, Switzerland</cop><pub>European Mathematical Society Publishing House</pub><doi>10.4171/IFB/433</doi><tpages>33</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1463-9963
ispartof Interfaces and free boundaries, 2020-01, Vol.22 (1), p.85-117
issn 1463-9963
1463-9971
language eng
recordid cdi_gale_infotracmisc_A622718742
source European Mathematical Society Publishing House
subjects Biology and other natural sciences
Partial differential equations
Surface science
title A bulk-surface reaction-diffusion system for cell polarization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T20%3A34%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20bulk-surface%20reaction-diffusion%20system%20for%20cell%20polarization&rft.jtitle=Interfaces%20and%20free%20boundaries&rft.au=Niethammer,%20Barbara&rft.date=2020-01-01&rft.volume=22&rft.issue=1&rft.spage=85&rft.epage=117&rft.pages=85-117&rft.issn=1463-9963&rft.eissn=1463-9971&rft_id=info:doi/10.4171/IFB/433&rft_dat=%3Cgale_cross%3EA622718742%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A622718742&rfr_iscdi=true