A bulk-surface reaction-diffusion system for cell polarization
We propose a model for cell polarization as a response to an external signal which results in a system of PDEs for different variants of a protein on the cell surface and interior respectively. We study stationary states of this model in certain parameter regimes in which several reaction rates on t...
Gespeichert in:
Veröffentlicht in: | Interfaces and free boundaries 2020-01, Vol.22 (1), p.85-117 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 117 |
---|---|
container_issue | 1 |
container_start_page | 85 |
container_title | Interfaces and free boundaries |
container_volume | 22 |
creator | Niethammer, Barbara Röger, Matthias Velázquez, Juan |
description | We propose a model for cell polarization as a response to an external signal which results in a system of PDEs for different variants of a protein on the cell surface and interior respectively. We study stationary states of this model in certain parameter regimes in which several reaction rates on the membrane as well as the diffusion coefficient within the cell are large. It turns out that in suitable scaling limits steady states converge to solutions of some obstacle type problems. For these limiting problems we prove the onset of polarization if the total mass of protein is sufficiently small. For some variants we can even characterize precisely the critical mass for which polarization occurs. |
doi_str_mv | 10.4171/IFB/433 |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracmisc_A622718742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A622718742</galeid><sourcerecordid>A622718742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-64cc89c1616c2250c4caa37373c5e689704186b3a42bde6bb8669e0bbfefdfae3</originalsourceid><addsrcrecordid>eNptkE9LAzEQxYMoWKv4FRY8eNo22aTZ3YtQS6uFghc9h2R2Iqn7pyS7h_rpTa1UBJnDPIbfG2YeIbeMTgTL2XS9epwKzs_IiAnJ07LM2flJS35JrkLYUkpLRvmIPMwTM9QfaRi81YCJRw2969q0ctYOIaok7EOPTWI7nwDWdbLrau3dpz5g1-TC6jrgzU8fk7fV8nXxnG5entaL-SYFntE-lQKgKIFJJiHLZhQEaM3zWDBDWZQ5FayQhmuRmQqlMYWUJVJjLNrKauRjcnfc-65rVK61Xe81NC6Amsssy1mRiyxSk3-oWBU2DroWrYvzP4b7owF8F4JHq3beNdrvFaPqkKZy1qiY5u8B2AS17QbfxndPVMz8m_oCBgBxgw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A bulk-surface reaction-diffusion system for cell polarization</title><source>European Mathematical Society Publishing House</source><creator>Niethammer, Barbara ; Röger, Matthias ; Velázquez, Juan</creator><creatorcontrib>Niethammer, Barbara ; Röger, Matthias ; Velázquez, Juan</creatorcontrib><description>We propose a model for cell polarization as a response to an external signal which results in a system of PDEs for different variants of a protein on the cell surface and interior respectively. We study stationary states of this model in certain parameter regimes in which several reaction rates on the membrane as well as the diffusion coefficient within the cell are large. It turns out that in suitable scaling limits steady states converge to solutions of some obstacle type problems. For these limiting problems we prove the onset of polarization if the total mass of protein is sufficiently small. For some variants we can even characterize precisely the critical mass for which polarization occurs.</description><identifier>ISSN: 1463-9963</identifier><identifier>EISSN: 1463-9971</identifier><identifier>DOI: 10.4171/IFB/433</identifier><language>eng</language><publisher>Zuerich, Switzerland: European Mathematical Society Publishing House</publisher><subject>Biology and other natural sciences ; Partial differential equations ; Surface science</subject><ispartof>Interfaces and free boundaries, 2020-01, Vol.22 (1), p.85-117</ispartof><rights>European Mathematical Society</rights><rights>COPYRIGHT 2020 European Mathematical Society Publishing House</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-64cc89c1616c2250c4caa37373c5e689704186b3a42bde6bb8669e0bbfefdfae3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,24034,27905,27906</link.rule.ids></links><search><creatorcontrib>Niethammer, Barbara</creatorcontrib><creatorcontrib>Röger, Matthias</creatorcontrib><creatorcontrib>Velázquez, Juan</creatorcontrib><title>A bulk-surface reaction-diffusion system for cell polarization</title><title>Interfaces and free boundaries</title><addtitle>Interfaces Free Bound</addtitle><description>We propose a model for cell polarization as a response to an external signal which results in a system of PDEs for different variants of a protein on the cell surface and interior respectively. We study stationary states of this model in certain parameter regimes in which several reaction rates on the membrane as well as the diffusion coefficient within the cell are large. It turns out that in suitable scaling limits steady states converge to solutions of some obstacle type problems. For these limiting problems we prove the onset of polarization if the total mass of protein is sufficiently small. For some variants we can even characterize precisely the critical mass for which polarization occurs.</description><subject>Biology and other natural sciences</subject><subject>Partial differential equations</subject><subject>Surface science</subject><issn>1463-9963</issn><issn>1463-9971</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNptkE9LAzEQxYMoWKv4FRY8eNo22aTZ3YtQS6uFghc9h2R2Iqn7pyS7h_rpTa1UBJnDPIbfG2YeIbeMTgTL2XS9epwKzs_IiAnJ07LM2flJS35JrkLYUkpLRvmIPMwTM9QfaRi81YCJRw2969q0ctYOIaok7EOPTWI7nwDWdbLrau3dpz5g1-TC6jrgzU8fk7fV8nXxnG5entaL-SYFntE-lQKgKIFJJiHLZhQEaM3zWDBDWZQ5FayQhmuRmQqlMYWUJVJjLNrKauRjcnfc-65rVK61Xe81NC6Amsssy1mRiyxSk3-oWBU2DroWrYvzP4b7owF8F4JHq3beNdrvFaPqkKZy1qiY5u8B2AS17QbfxndPVMz8m_oCBgBxgw</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Niethammer, Barbara</creator><creator>Röger, Matthias</creator><creator>Velázquez, Juan</creator><general>European Mathematical Society Publishing House</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200101</creationdate><title>A bulk-surface reaction-diffusion system for cell polarization</title><author>Niethammer, Barbara ; Röger, Matthias ; Velázquez, Juan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-64cc89c1616c2250c4caa37373c5e689704186b3a42bde6bb8669e0bbfefdfae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biology and other natural sciences</topic><topic>Partial differential equations</topic><topic>Surface science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niethammer, Barbara</creatorcontrib><creatorcontrib>Röger, Matthias</creatorcontrib><creatorcontrib>Velázquez, Juan</creatorcontrib><collection>CrossRef</collection><jtitle>Interfaces and free boundaries</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niethammer, Barbara</au><au>Röger, Matthias</au><au>Velázquez, Juan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A bulk-surface reaction-diffusion system for cell polarization</atitle><jtitle>Interfaces and free boundaries</jtitle><addtitle>Interfaces Free Bound</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>22</volume><issue>1</issue><spage>85</spage><epage>117</epage><pages>85-117</pages><issn>1463-9963</issn><eissn>1463-9971</eissn><abstract>We propose a model for cell polarization as a response to an external signal which results in a system of PDEs for different variants of a protein on the cell surface and interior respectively. We study stationary states of this model in certain parameter regimes in which several reaction rates on the membrane as well as the diffusion coefficient within the cell are large. It turns out that in suitable scaling limits steady states converge to solutions of some obstacle type problems. For these limiting problems we prove the onset of polarization if the total mass of protein is sufficiently small. For some variants we can even characterize precisely the critical mass for which polarization occurs.</abstract><cop>Zuerich, Switzerland</cop><pub>European Mathematical Society Publishing House</pub><doi>10.4171/IFB/433</doi><tpages>33</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9963 |
ispartof | Interfaces and free boundaries, 2020-01, Vol.22 (1), p.85-117 |
issn | 1463-9963 1463-9971 |
language | eng |
recordid | cdi_gale_infotracmisc_A622718742 |
source | European Mathematical Society Publishing House |
subjects | Biology and other natural sciences Partial differential equations Surface science |
title | A bulk-surface reaction-diffusion system for cell polarization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T20%3A34%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20bulk-surface%20reaction-diffusion%20system%20for%20cell%20polarization&rft.jtitle=Interfaces%20and%20free%20boundaries&rft.au=Niethammer,%20Barbara&rft.date=2020-01-01&rft.volume=22&rft.issue=1&rft.spage=85&rft.epage=117&rft.pages=85-117&rft.issn=1463-9963&rft.eissn=1463-9971&rft_id=info:doi/10.4171/IFB/433&rft_dat=%3Cgale_cross%3EA622718742%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A622718742&rfr_iscdi=true |