Well-posedness of non-isentropic Euler equations with physical vacuum

We consider the local well-posedness of the one-dimensional non-isentropic compressible Euler equations with moving physical vacuum boundary condition. The physical vacuum singularity requires the sound speed to be scaled as the square root of the distance to the vacuum boundary. The main difficulty...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Interfaces and free boundaries 2019-01, Vol.21 (2), p.231-266
Hauptverfasser: Geng, Yongcai, Li, Yachun, Wang, Dehua, Xu, Runzhang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 266
container_issue 2
container_start_page 231
container_title Interfaces and free boundaries
container_volume 21
creator Geng, Yongcai
Li, Yachun
Wang, Dehua
Xu, Runzhang
description We consider the local well-posedness of the one-dimensional non-isentropic compressible Euler equations with moving physical vacuum boundary condition. The physical vacuum singularity requires the sound speed to be scaled as the square root of the distance to the vacuum boundary. The main difficulty lies in the fact that the system of hyperbolic conservation laws becomes characteristic and degenerate at the vacuum boundary. Our proof is based on an approximation of the Euler equations by a degenerate parabolic regularization obtained from a specific choice of a degenerate artificial viscosity term. Then we construct the solutions to this degenerate parabolic problem and establish the estimates that are uniform with respect to the artificial viscosity parameter. Solutions to the compressible Euler equations are obtained as the limit of the vanishing artificial viscosity. Different from the isentropic case [7, 12], our momentum equation of conservation laws has an extra term $p_{S}S_\eta$ that leads to some extra terms in the energy function and causes more difficulties even for the case of $\gamma=2$. Moreover, we deal with this free boundary problem starting from the general cases of $2\leq\gamma
doi_str_mv 10.4171/IFB/422
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracmisc_A622649957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A622649957</galeid><sourcerecordid>A622649957</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-e11f77957089fb3198c527a989f9145823656057f11f3835908b9137146553873</originalsourceid><addsrcrecordid>eNptkE1LAzEQhoMoWKv4FwIePG2bbDabzbGWVgsFL4rHkE0Tm7KbrMmu0n9vtFIRZA7zwTMvMy8A1xhNCszwdLW8mxZ5fgJGuChJxjnDp8e6JOfgIsYdQohjREZg8aKbJut81BunY4TeQOddZqN2ffCdVXAxNDpA_TbI3noX4Yftt7Db7qNVsoHvUg1DewnOjGyivvrJY_C8XDzNH7L14_1qPltniuSozzTGhjFOGaq4qQnmlaI5kzx1HBe0yklJS0SZSRypCOWoqjkmLB1PKakYGYObg-6rbLSwzvg-SNXaqMSszPOy4Ek8UZN_qBQb3VrlnTY2zf8s3B4WVPAxBm1EF2wrw15gJL5MFdbUIpn6e4Buo9j5Ibj07pFK1n9Tn-44cWs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Well-posedness of non-isentropic Euler equations with physical vacuum</title><source>European Mathematical Society Publishing House</source><creator>Geng, Yongcai ; Li, Yachun ; Wang, Dehua ; Xu, Runzhang</creator><creatorcontrib>Geng, Yongcai ; Li, Yachun ; Wang, Dehua ; Xu, Runzhang</creatorcontrib><description>We consider the local well-posedness of the one-dimensional non-isentropic compressible Euler equations with moving physical vacuum boundary condition. The physical vacuum singularity requires the sound speed to be scaled as the square root of the distance to the vacuum boundary. The main difficulty lies in the fact that the system of hyperbolic conservation laws becomes characteristic and degenerate at the vacuum boundary. Our proof is based on an approximation of the Euler equations by a degenerate parabolic regularization obtained from a specific choice of a degenerate artificial viscosity term. Then we construct the solutions to this degenerate parabolic problem and establish the estimates that are uniform with respect to the artificial viscosity parameter. Solutions to the compressible Euler equations are obtained as the limit of the vanishing artificial viscosity. Different from the isentropic case [7, 12], our momentum equation of conservation laws has an extra term $p_{S}S_\eta$ that leads to some extra terms in the energy function and causes more difficulties even for the case of $\gamma=2$. Moreover, we deal with this free boundary problem starting from the general cases of $2\leq\gamma</description><identifier>ISSN: 1463-9963</identifier><identifier>EISSN: 1463-9971</identifier><identifier>DOI: 10.4171/IFB/422</identifier><language>eng</language><publisher>Zuerich, Switzerland: European Mathematical Society Publishing House</publisher><subject>Environmental law ; Fluid mechanics ; Partial differential equations</subject><ispartof>Interfaces and free boundaries, 2019-01, Vol.21 (2), p.231-266</ispartof><rights>European Mathematical Society</rights><rights>COPYRIGHT 2019 European Mathematical Society Publishing House</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-e11f77957089fb3198c527a989f9145823656057f11f3835908b9137146553873</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,24032,27901,27902</link.rule.ids></links><search><creatorcontrib>Geng, Yongcai</creatorcontrib><creatorcontrib>Li, Yachun</creatorcontrib><creatorcontrib>Wang, Dehua</creatorcontrib><creatorcontrib>Xu, Runzhang</creatorcontrib><title>Well-posedness of non-isentropic Euler equations with physical vacuum</title><title>Interfaces and free boundaries</title><addtitle>Interfaces Free Bound</addtitle><description>We consider the local well-posedness of the one-dimensional non-isentropic compressible Euler equations with moving physical vacuum boundary condition. The physical vacuum singularity requires the sound speed to be scaled as the square root of the distance to the vacuum boundary. The main difficulty lies in the fact that the system of hyperbolic conservation laws becomes characteristic and degenerate at the vacuum boundary. Our proof is based on an approximation of the Euler equations by a degenerate parabolic regularization obtained from a specific choice of a degenerate artificial viscosity term. Then we construct the solutions to this degenerate parabolic problem and establish the estimates that are uniform with respect to the artificial viscosity parameter. Solutions to the compressible Euler equations are obtained as the limit of the vanishing artificial viscosity. Different from the isentropic case [7, 12], our momentum equation of conservation laws has an extra term $p_{S}S_\eta$ that leads to some extra terms in the energy function and causes more difficulties even for the case of $\gamma=2$. Moreover, we deal with this free boundary problem starting from the general cases of $2\leq\gamma</description><subject>Environmental law</subject><subject>Fluid mechanics</subject><subject>Partial differential equations</subject><issn>1463-9963</issn><issn>1463-9971</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNptkE1LAzEQhoMoWKv4FwIePG2bbDabzbGWVgsFL4rHkE0Tm7KbrMmu0n9vtFIRZA7zwTMvMy8A1xhNCszwdLW8mxZ5fgJGuChJxjnDp8e6JOfgIsYdQohjREZg8aKbJut81BunY4TeQOddZqN2ffCdVXAxNDpA_TbI3noX4Yftt7Db7qNVsoHvUg1DewnOjGyivvrJY_C8XDzNH7L14_1qPltniuSozzTGhjFOGaq4qQnmlaI5kzx1HBe0yklJS0SZSRypCOWoqjkmLB1PKakYGYObg-6rbLSwzvg-SNXaqMSszPOy4Ek8UZN_qBQb3VrlnTY2zf8s3B4WVPAxBm1EF2wrw15gJL5MFdbUIpn6e4Buo9j5Ibj07pFK1n9Tn-44cWs</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Geng, Yongcai</creator><creator>Li, Yachun</creator><creator>Wang, Dehua</creator><creator>Xu, Runzhang</creator><general>European Mathematical Society Publishing House</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190101</creationdate><title>Well-posedness of non-isentropic Euler equations with physical vacuum</title><author>Geng, Yongcai ; Li, Yachun ; Wang, Dehua ; Xu, Runzhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-e11f77957089fb3198c527a989f9145823656057f11f3835908b9137146553873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Environmental law</topic><topic>Fluid mechanics</topic><topic>Partial differential equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geng, Yongcai</creatorcontrib><creatorcontrib>Li, Yachun</creatorcontrib><creatorcontrib>Wang, Dehua</creatorcontrib><creatorcontrib>Xu, Runzhang</creatorcontrib><collection>CrossRef</collection><jtitle>Interfaces and free boundaries</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geng, Yongcai</au><au>Li, Yachun</au><au>Wang, Dehua</au><au>Xu, Runzhang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Well-posedness of non-isentropic Euler equations with physical vacuum</atitle><jtitle>Interfaces and free boundaries</jtitle><addtitle>Interfaces Free Bound</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>21</volume><issue>2</issue><spage>231</spage><epage>266</epage><pages>231-266</pages><issn>1463-9963</issn><eissn>1463-9971</eissn><abstract>We consider the local well-posedness of the one-dimensional non-isentropic compressible Euler equations with moving physical vacuum boundary condition. The physical vacuum singularity requires the sound speed to be scaled as the square root of the distance to the vacuum boundary. The main difficulty lies in the fact that the system of hyperbolic conservation laws becomes characteristic and degenerate at the vacuum boundary. Our proof is based on an approximation of the Euler equations by a degenerate parabolic regularization obtained from a specific choice of a degenerate artificial viscosity term. Then we construct the solutions to this degenerate parabolic problem and establish the estimates that are uniform with respect to the artificial viscosity parameter. Solutions to the compressible Euler equations are obtained as the limit of the vanishing artificial viscosity. Different from the isentropic case [7, 12], our momentum equation of conservation laws has an extra term $p_{S}S_\eta$ that leads to some extra terms in the energy function and causes more difficulties even for the case of $\gamma=2$. Moreover, we deal with this free boundary problem starting from the general cases of $2\leq\gamma</abstract><cop>Zuerich, Switzerland</cop><pub>European Mathematical Society Publishing House</pub><doi>10.4171/IFB/422</doi><tpages>36</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1463-9963
ispartof Interfaces and free boundaries, 2019-01, Vol.21 (2), p.231-266
issn 1463-9963
1463-9971
language eng
recordid cdi_gale_infotracmisc_A622649957
source European Mathematical Society Publishing House
subjects Environmental law
Fluid mechanics
Partial differential equations
title Well-posedness of non-isentropic Euler equations with physical vacuum
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T02%3A10%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Well-posedness%20of%20non-isentropic%20Euler%20equations%20with%20physical%20vacuum&rft.jtitle=Interfaces%20and%20free%20boundaries&rft.au=Geng,%20Yongcai&rft.date=2019-01-01&rft.volume=21&rft.issue=2&rft.spage=231&rft.epage=266&rft.pages=231-266&rft.issn=1463-9963&rft.eissn=1463-9971&rft_id=info:doi/10.4171/IFB/422&rft_dat=%3Cgale_cross%3EA622649957%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A622649957&rfr_iscdi=true