Impact of ambient conditions on the Si isotope fractionation in marine pore fluids during early diagenesis

Benthic fluxes of dissolved silicon (Si) from sediments into the water column are driven by the dissolution of biogenic silica (bSiO2) and terrigenous Si minerals and modulated by the precipitation of authigenic Si phases. Each of these processes has a specific effect on the isotopic composition of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biogeosciences 2020-04, Vol.17 (7), p.1745-1763
Hauptverfasser: Geilert, Sonja, Grasse, Patricia, Doering, Kristin, Wallmann, Klaus, Ehlert, Claudia, Scholz, Florian, Frank, Martin, Schmidt, Mark, Hensen, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1763
container_issue 7
container_start_page 1745
container_title Biogeosciences
container_volume 17
creator Geilert, Sonja
Grasse, Patricia
Doering, Kristin
Wallmann, Klaus
Ehlert, Claudia
Scholz, Florian
Frank, Martin
Schmidt, Mark
Hensen, Christian
description Benthic fluxes of dissolved silicon (Si) from sediments into the water column are driven by the dissolution of biogenic silica (bSiO2) and terrigenous Si minerals and modulated by the precipitation of authigenic Si phases. Each of these processes has a specific effect on the isotopic composition of silicon dissolved in sediment pore fluids, such that the determination of pore fluid δ30Si values can help to decipher the complex Si cycle in surface sediments. In this study, the δ30Si signatures of pore fluids and bSiO2 in the Guaymas Basin (Gulf of California) were analyzed, which is characterized by high bSiO2 accumulation and hydrothermal activity. The δ30Si signatures were investigated in the deep basin, in the vicinity of a hydrothermal vent field, and at an anoxic site located within the pronounced oxygen minimum zone (OMZ). The pore fluid δ30Sipf signatures differ significantly depending on the ambient conditions. Within the basin, δ30Sipf is essentially uniform, averaging +1.2±0.1 ‰ (1 SD). Pore fluid δ30Sipf values from within the OMZ are significantly lower (0.0±0.5 ‰, 1 SD), while pore fluids close to the hydrothermal vent field are higher (+2.0±0.2 ‰, 1SD). Reactive transport modeling results show that the δ30Sipf is mainly controlled by silica dissolution (bSiO2 and terrigenous phases) and Si precipitation (authigenic aluminosilicates). Precipitation processes cause a shift to high pore fluid δ30Sipf signatures, most pronounced at the hydrothermal site. Within the OMZ, however, additional dissolution of isotopically depleted Si minerals (e.g., clays) facilitated by high mass accumulation rates of terrigenous material (MARterr) is required to promote the low δ30Sipf signatures, while precipitation of authigenic aluminosilicates seems to be hampered by high water ∕ rock ratios. Guaymas OMZ δ30Sipf values are markedly different from those of the Peruvian OMZ, the only other marine OMZ setting where Si isotopes have been investigated to constrain early diagenetic processes. These differences highlight the fact that δ30Sipf signals in OMZs worldwide are not alike and each setting can result in a range of δ30Sipf values as a function of the environmental conditions. We conclude that the benthic silicon cycle is more complex than previously thought and that additional Si isotope studies are needed to decipher the controls on Si turnover in marine sediment and the role of sediments in the marine silicon cycle.
doi_str_mv 10.5194/bg-17-1745-2020
format Article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_gale_infotracmisc_A619368293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A619368293</galeid><doaj_id>oai_doaj_org_article_1fd3823405034b439395523614d20cbf</doaj_id><sourcerecordid>A619368293</sourcerecordid><originalsourceid>FETCH-LOGICAL-c543t-628af3826912bf80f174eabf59af84142fcfae36fa914395528cd2b61111a2f3</originalsourceid><addsrcrecordid>eNptks9rFTEQxxdRsFbPXgOePGybX5uXPZai9UFBsL2H2U2y5vE2WZMs2P_e2T5RH5iEJMx85puZME3zntGrjvXyephatsMlu5ZTTl80F2zHVSuZ7l_-c3_dvCnlQKnQVHcXzWE_LzBWkjyBeQguVjKmaEMNKRaSIqnfHXkIJJRU0-KIz0ijD7aNhEhmyCE6sqSMzuMabCF2RdNEHOTjE7EBJhddCeVt88rDsbh3v8_L5vHzp8fbL-3917v97c19O3ZS1FZxDV5ornrGB6-px5IcDL7rwWvJJPejByeUh55J0Xcd16Plg2I4gHtx2exPsjbBwSw5YIZPJkEwz4aUJwO5hvHoDPMWHxKSdlTIAcWe5YRi0nI6DpvWh5PWktOP1ZVqDmnNEbM3HFORTDEu_1IToGiIPlX8pTmU0dwo1guleS-QuvoPhdO6OeCfOx_Qfhbw8SwAmep-1gnWUsz-4ds5e31ix5xKyc7_KZxRs7WHGSbDdmZrD7O1h_gFaJmqeQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2414416124</pqid></control><display><type>article</type><title>Impact of ambient conditions on the Si isotope fractionation in marine pore fluids during early diagenesis</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Geilert, Sonja ; Grasse, Patricia ; Doering, Kristin ; Wallmann, Klaus ; Ehlert, Claudia ; Scholz, Florian ; Frank, Martin ; Schmidt, Mark ; Hensen, Christian</creator><creatorcontrib>Geilert, Sonja ; Grasse, Patricia ; Doering, Kristin ; Wallmann, Klaus ; Ehlert, Claudia ; Scholz, Florian ; Frank, Martin ; Schmidt, Mark ; Hensen, Christian</creatorcontrib><description>Benthic fluxes of dissolved silicon (Si) from sediments into the water column are driven by the dissolution of biogenic silica (bSiO2) and terrigenous Si minerals and modulated by the precipitation of authigenic Si phases. Each of these processes has a specific effect on the isotopic composition of silicon dissolved in sediment pore fluids, such that the determination of pore fluid δ30Si values can help to decipher the complex Si cycle in surface sediments. In this study, the δ30Si signatures of pore fluids and bSiO2 in the Guaymas Basin (Gulf of California) were analyzed, which is characterized by high bSiO2 accumulation and hydrothermal activity. The δ30Si signatures were investigated in the deep basin, in the vicinity of a hydrothermal vent field, and at an anoxic site located within the pronounced oxygen minimum zone (OMZ). The pore fluid δ30Sipf signatures differ significantly depending on the ambient conditions. Within the basin, δ30Sipf is essentially uniform, averaging +1.2±0.1 ‰ (1 SD). Pore fluid δ30Sipf values from within the OMZ are significantly lower (0.0±0.5 ‰, 1 SD), while pore fluids close to the hydrothermal vent field are higher (+2.0±0.2 ‰, 1SD). Reactive transport modeling results show that the δ30Sipf is mainly controlled by silica dissolution (bSiO2 and terrigenous phases) and Si precipitation (authigenic aluminosilicates). Precipitation processes cause a shift to high pore fluid δ30Sipf signatures, most pronounced at the hydrothermal site. Within the OMZ, however, additional dissolution of isotopically depleted Si minerals (e.g., clays) facilitated by high mass accumulation rates of terrigenous material (MARterr) is required to promote the low δ30Sipf signatures, while precipitation of authigenic aluminosilicates seems to be hampered by high water ∕ rock ratios. Guaymas OMZ δ30Sipf values are markedly different from those of the Peruvian OMZ, the only other marine OMZ setting where Si isotopes have been investigated to constrain early diagenetic processes. These differences highlight the fact that δ30Sipf signals in OMZs worldwide are not alike and each setting can result in a range of δ30Sipf values as a function of the environmental conditions. We conclude that the benthic silicon cycle is more complex than previously thought and that additional Si isotope studies are needed to decipher the controls on Si turnover in marine sediment and the role of sediments in the marine silicon cycle.</description><identifier>ISSN: 1726-4189</identifier><identifier>ISSN: 1726-4170</identifier><identifier>EISSN: 1726-4189</identifier><identifier>DOI: 10.5194/bg-17-1745-2020</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Accumulation ; Aluminosilicates ; Aluminum silicates ; Analysis ; Anoxia ; Anoxic sediments ; Basins ; Benthos ; Chemical precipitation ; Clay ; Composition effects ; Computational fluid dynamics ; Diagenesis ; Diagenesis (Geology) ; Dissolution ; Dissolving ; Environmental conditions ; Environmental quality ; Fluids ; Fluxes ; Fractionation ; Hydrothermal activity ; Hydrothermal plumes ; Hydrothermal vent ecosystems ; Isotope composition ; Isotope fractionation ; Isotope studies ; Isotopes ; Marine sediments ; Minerals ; Oxygen ; Precipitation ; Precipitation processes ; Productivity ; Ratios ; Seawater ; Sediment ; Sediments ; Sediments (Geology) ; Setting (Literature) ; Signal processing ; Signatures ; Silica ; Silicon ; Silicon cycle ; Silicon dioxide ; Terrigenous sediments ; Water circulation ; Water column</subject><ispartof>Biogeosciences, 2020-04, Vol.17 (7), p.1745-1763</ispartof><rights>COPYRIGHT 2020 Copernicus GmbH</rights><rights>2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c543t-628af3826912bf80f174eabf59af84142fcfae36fa914395528cd2b61111a2f3</citedby><cites>FETCH-LOGICAL-c543t-628af3826912bf80f174eabf59af84142fcfae36fa914395528cd2b61111a2f3</cites><orcidid>0000-0002-8971-5867 ; 0000-0003-0235-4542 ; 0000-0002-1745-4418 ; 0000-0002-7900-2169</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2095,27903,27904</link.rule.ids></links><search><creatorcontrib>Geilert, Sonja</creatorcontrib><creatorcontrib>Grasse, Patricia</creatorcontrib><creatorcontrib>Doering, Kristin</creatorcontrib><creatorcontrib>Wallmann, Klaus</creatorcontrib><creatorcontrib>Ehlert, Claudia</creatorcontrib><creatorcontrib>Scholz, Florian</creatorcontrib><creatorcontrib>Frank, Martin</creatorcontrib><creatorcontrib>Schmidt, Mark</creatorcontrib><creatorcontrib>Hensen, Christian</creatorcontrib><title>Impact of ambient conditions on the Si isotope fractionation in marine pore fluids during early diagenesis</title><title>Biogeosciences</title><description>Benthic fluxes of dissolved silicon (Si) from sediments into the water column are driven by the dissolution of biogenic silica (bSiO2) and terrigenous Si minerals and modulated by the precipitation of authigenic Si phases. Each of these processes has a specific effect on the isotopic composition of silicon dissolved in sediment pore fluids, such that the determination of pore fluid δ30Si values can help to decipher the complex Si cycle in surface sediments. In this study, the δ30Si signatures of pore fluids and bSiO2 in the Guaymas Basin (Gulf of California) were analyzed, which is characterized by high bSiO2 accumulation and hydrothermal activity. The δ30Si signatures were investigated in the deep basin, in the vicinity of a hydrothermal vent field, and at an anoxic site located within the pronounced oxygen minimum zone (OMZ). The pore fluid δ30Sipf signatures differ significantly depending on the ambient conditions. Within the basin, δ30Sipf is essentially uniform, averaging +1.2±0.1 ‰ (1 SD). Pore fluid δ30Sipf values from within the OMZ are significantly lower (0.0±0.5 ‰, 1 SD), while pore fluids close to the hydrothermal vent field are higher (+2.0±0.2 ‰, 1SD). Reactive transport modeling results show that the δ30Sipf is mainly controlled by silica dissolution (bSiO2 and terrigenous phases) and Si precipitation (authigenic aluminosilicates). Precipitation processes cause a shift to high pore fluid δ30Sipf signatures, most pronounced at the hydrothermal site. Within the OMZ, however, additional dissolution of isotopically depleted Si minerals (e.g., clays) facilitated by high mass accumulation rates of terrigenous material (MARterr) is required to promote the low δ30Sipf signatures, while precipitation of authigenic aluminosilicates seems to be hampered by high water ∕ rock ratios. Guaymas OMZ δ30Sipf values are markedly different from those of the Peruvian OMZ, the only other marine OMZ setting where Si isotopes have been investigated to constrain early diagenetic processes. These differences highlight the fact that δ30Sipf signals in OMZs worldwide are not alike and each setting can result in a range of δ30Sipf values as a function of the environmental conditions. We conclude that the benthic silicon cycle is more complex than previously thought and that additional Si isotope studies are needed to decipher the controls on Si turnover in marine sediment and the role of sediments in the marine silicon cycle.</description><subject>Accumulation</subject><subject>Aluminosilicates</subject><subject>Aluminum silicates</subject><subject>Analysis</subject><subject>Anoxia</subject><subject>Anoxic sediments</subject><subject>Basins</subject><subject>Benthos</subject><subject>Chemical precipitation</subject><subject>Clay</subject><subject>Composition effects</subject><subject>Computational fluid dynamics</subject><subject>Diagenesis</subject><subject>Diagenesis (Geology)</subject><subject>Dissolution</subject><subject>Dissolving</subject><subject>Environmental conditions</subject><subject>Environmental quality</subject><subject>Fluids</subject><subject>Fluxes</subject><subject>Fractionation</subject><subject>Hydrothermal activity</subject><subject>Hydrothermal plumes</subject><subject>Hydrothermal vent ecosystems</subject><subject>Isotope composition</subject><subject>Isotope fractionation</subject><subject>Isotope studies</subject><subject>Isotopes</subject><subject>Marine sediments</subject><subject>Minerals</subject><subject>Oxygen</subject><subject>Precipitation</subject><subject>Precipitation processes</subject><subject>Productivity</subject><subject>Ratios</subject><subject>Seawater</subject><subject>Sediment</subject><subject>Sediments</subject><subject>Sediments (Geology)</subject><subject>Setting (Literature)</subject><subject>Signal processing</subject><subject>Signatures</subject><subject>Silica</subject><subject>Silicon</subject><subject>Silicon cycle</subject><subject>Silicon dioxide</subject><subject>Terrigenous sediments</subject><subject>Water circulation</subject><subject>Water column</subject><issn>1726-4189</issn><issn>1726-4170</issn><issn>1726-4189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptks9rFTEQxxdRsFbPXgOePGybX5uXPZai9UFBsL2H2U2y5vE2WZMs2P_e2T5RH5iEJMx85puZME3zntGrjvXyephatsMlu5ZTTl80F2zHVSuZ7l_-c3_dvCnlQKnQVHcXzWE_LzBWkjyBeQguVjKmaEMNKRaSIqnfHXkIJJRU0-KIz0ijD7aNhEhmyCE6sqSMzuMabCF2RdNEHOTjE7EBJhddCeVt88rDsbh3v8_L5vHzp8fbL-3917v97c19O3ZS1FZxDV5ornrGB6-px5IcDL7rwWvJJPejByeUh55J0Xcd16Plg2I4gHtx2exPsjbBwSw5YIZPJkEwz4aUJwO5hvHoDPMWHxKSdlTIAcWe5YRi0nI6DpvWh5PWktOP1ZVqDmnNEbM3HFORTDEu_1IToGiIPlX8pTmU0dwo1guleS-QuvoPhdO6OeCfOx_Qfhbw8SwAmep-1gnWUsz-4ds5e31ix5xKyc7_KZxRs7WHGSbDdmZrD7O1h_gFaJmqeQ</recordid><startdate>20200403</startdate><enddate>20200403</enddate><creator>Geilert, Sonja</creator><creator>Grasse, Patricia</creator><creator>Doering, Kristin</creator><creator>Wallmann, Klaus</creator><creator>Ehlert, Claudia</creator><creator>Scholz, Florian</creator><creator>Frank, Martin</creator><creator>Schmidt, Mark</creator><creator>Hensen, Christian</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7QO</scope><scope>7SN</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H95</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L6V</scope><scope>LK8</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8971-5867</orcidid><orcidid>https://orcid.org/0000-0003-0235-4542</orcidid><orcidid>https://orcid.org/0000-0002-1745-4418</orcidid><orcidid>https://orcid.org/0000-0002-7900-2169</orcidid></search><sort><creationdate>20200403</creationdate><title>Impact of ambient conditions on the Si isotope fractionation in marine pore fluids during early diagenesis</title><author>Geilert, Sonja ; Grasse, Patricia ; Doering, Kristin ; Wallmann, Klaus ; Ehlert, Claudia ; Scholz, Florian ; Frank, Martin ; Schmidt, Mark ; Hensen, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c543t-628af3826912bf80f174eabf59af84142fcfae36fa914395528cd2b61111a2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accumulation</topic><topic>Aluminosilicates</topic><topic>Aluminum silicates</topic><topic>Analysis</topic><topic>Anoxia</topic><topic>Anoxic sediments</topic><topic>Basins</topic><topic>Benthos</topic><topic>Chemical precipitation</topic><topic>Clay</topic><topic>Composition effects</topic><topic>Computational fluid dynamics</topic><topic>Diagenesis</topic><topic>Diagenesis (Geology)</topic><topic>Dissolution</topic><topic>Dissolving</topic><topic>Environmental conditions</topic><topic>Environmental quality</topic><topic>Fluids</topic><topic>Fluxes</topic><topic>Fractionation</topic><topic>Hydrothermal activity</topic><topic>Hydrothermal plumes</topic><topic>Hydrothermal vent ecosystems</topic><topic>Isotope composition</topic><topic>Isotope fractionation</topic><topic>Isotope studies</topic><topic>Isotopes</topic><topic>Marine sediments</topic><topic>Minerals</topic><topic>Oxygen</topic><topic>Precipitation</topic><topic>Precipitation processes</topic><topic>Productivity</topic><topic>Ratios</topic><topic>Seawater</topic><topic>Sediment</topic><topic>Sediments</topic><topic>Sediments (Geology)</topic><topic>Setting (Literature)</topic><topic>Signal processing</topic><topic>Signatures</topic><topic>Silica</topic><topic>Silicon</topic><topic>Silicon cycle</topic><topic>Silicon dioxide</topic><topic>Terrigenous sediments</topic><topic>Water circulation</topic><topic>Water column</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geilert, Sonja</creatorcontrib><creatorcontrib>Grasse, Patricia</creatorcontrib><creatorcontrib>Doering, Kristin</creatorcontrib><creatorcontrib>Wallmann, Klaus</creatorcontrib><creatorcontrib>Ehlert, Claudia</creatorcontrib><creatorcontrib>Scholz, Florian</creatorcontrib><creatorcontrib>Frank, Martin</creatorcontrib><creatorcontrib>Schmidt, Mark</creatorcontrib><creatorcontrib>Hensen, Christian</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Biogeosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geilert, Sonja</au><au>Grasse, Patricia</au><au>Doering, Kristin</au><au>Wallmann, Klaus</au><au>Ehlert, Claudia</au><au>Scholz, Florian</au><au>Frank, Martin</au><au>Schmidt, Mark</au><au>Hensen, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of ambient conditions on the Si isotope fractionation in marine pore fluids during early diagenesis</atitle><jtitle>Biogeosciences</jtitle><date>2020-04-03</date><risdate>2020</risdate><volume>17</volume><issue>7</issue><spage>1745</spage><epage>1763</epage><pages>1745-1763</pages><issn>1726-4189</issn><issn>1726-4170</issn><eissn>1726-4189</eissn><abstract>Benthic fluxes of dissolved silicon (Si) from sediments into the water column are driven by the dissolution of biogenic silica (bSiO2) and terrigenous Si minerals and modulated by the precipitation of authigenic Si phases. Each of these processes has a specific effect on the isotopic composition of silicon dissolved in sediment pore fluids, such that the determination of pore fluid δ30Si values can help to decipher the complex Si cycle in surface sediments. In this study, the δ30Si signatures of pore fluids and bSiO2 in the Guaymas Basin (Gulf of California) were analyzed, which is characterized by high bSiO2 accumulation and hydrothermal activity. The δ30Si signatures were investigated in the deep basin, in the vicinity of a hydrothermal vent field, and at an anoxic site located within the pronounced oxygen minimum zone (OMZ). The pore fluid δ30Sipf signatures differ significantly depending on the ambient conditions. Within the basin, δ30Sipf is essentially uniform, averaging +1.2±0.1 ‰ (1 SD). Pore fluid δ30Sipf values from within the OMZ are significantly lower (0.0±0.5 ‰, 1 SD), while pore fluids close to the hydrothermal vent field are higher (+2.0±0.2 ‰, 1SD). Reactive transport modeling results show that the δ30Sipf is mainly controlled by silica dissolution (bSiO2 and terrigenous phases) and Si precipitation (authigenic aluminosilicates). Precipitation processes cause a shift to high pore fluid δ30Sipf signatures, most pronounced at the hydrothermal site. Within the OMZ, however, additional dissolution of isotopically depleted Si minerals (e.g., clays) facilitated by high mass accumulation rates of terrigenous material (MARterr) is required to promote the low δ30Sipf signatures, while precipitation of authigenic aluminosilicates seems to be hampered by high water ∕ rock ratios. Guaymas OMZ δ30Sipf values are markedly different from those of the Peruvian OMZ, the only other marine OMZ setting where Si isotopes have been investigated to constrain early diagenetic processes. These differences highlight the fact that δ30Sipf signals in OMZs worldwide are not alike and each setting can result in a range of δ30Sipf values as a function of the environmental conditions. We conclude that the benthic silicon cycle is more complex than previously thought and that additional Si isotope studies are needed to decipher the controls on Si turnover in marine sediment and the role of sediments in the marine silicon cycle.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/bg-17-1745-2020</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-8971-5867</orcidid><orcidid>https://orcid.org/0000-0003-0235-4542</orcidid><orcidid>https://orcid.org/0000-0002-1745-4418</orcidid><orcidid>https://orcid.org/0000-0002-7900-2169</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1726-4189
ispartof Biogeosciences, 2020-04, Vol.17 (7), p.1745-1763
issn 1726-4189
1726-4170
1726-4189
language eng
recordid cdi_gale_infotracmisc_A619368293
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Accumulation
Aluminosilicates
Aluminum silicates
Analysis
Anoxia
Anoxic sediments
Basins
Benthos
Chemical precipitation
Clay
Composition effects
Computational fluid dynamics
Diagenesis
Diagenesis (Geology)
Dissolution
Dissolving
Environmental conditions
Environmental quality
Fluids
Fluxes
Fractionation
Hydrothermal activity
Hydrothermal plumes
Hydrothermal vent ecosystems
Isotope composition
Isotope fractionation
Isotope studies
Isotopes
Marine sediments
Minerals
Oxygen
Precipitation
Precipitation processes
Productivity
Ratios
Seawater
Sediment
Sediments
Sediments (Geology)
Setting (Literature)
Signal processing
Signatures
Silica
Silicon
Silicon cycle
Silicon dioxide
Terrigenous sediments
Water circulation
Water column
title Impact of ambient conditions on the Si isotope fractionation in marine pore fluids during early diagenesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A31%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20ambient%20conditions%20on%20the%20Si%20isotope%20fractionation%20in%20marine%20pore%20fluids%20during%20early%20diagenesis&rft.jtitle=Biogeosciences&rft.au=Geilert,%20Sonja&rft.date=2020-04-03&rft.volume=17&rft.issue=7&rft.spage=1745&rft.epage=1763&rft.pages=1745-1763&rft.issn=1726-4189&rft.eissn=1726-4189&rft_id=info:doi/10.5194/bg-17-1745-2020&rft_dat=%3Cgale_doaj_%3EA619368293%3C/gale_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2414416124&rft_id=info:pmid/&rft_galeid=A619368293&rft_doaj_id=oai_doaj_org_article_1fd3823405034b439395523614d20cbf&rfr_iscdi=true