Assessment of branch point prediction tools to predict physiological branch points and their alteration by variants

Branch points (BPs) map within short motifs upstream of acceptor splice sites (3'ss) and are essential for splicing of pre-mature mRNA. Several BP-dedicated bioinformatics tools, including HSF, SVM-BPfinder, BPP, Branchpointer, LaBranchoR and RNABPS were developed during the last decade. Here,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC genomics 2020-01, Vol.21 (1), p.86-86, Article 86
Hauptverfasser: Leman, Raphaël, Tubeuf, Hélène, Raad, Sabine, Tournier, Isabelle, Derambure, Céline, Lanos, Raphaël, Gaildrat, Pascaline, Castelain, Gaia, Hauchard, Julie, Killian, Audrey, Baert-Desurmont, Stéphanie, Legros, Angelina, Goardon, Nicolas, Quesnelle, Céline, Ricou, Agathe, Castera, Laurent, Vaur, Dominique, Le Gac, Gérald, Ka, Chandran, Fichou, Yann, Bonnet-Dorion, Françoise, Sevenet, Nicolas, Guillaud-Bataille, Marine, Boutry-Kryza, Nadia, Schultz, Inès, Caux-Moncoutier, Virginie, Rossing, Maria, Walker, Logan C, Spurdle, Amanda B, Houdayer, Claude, Martins, Alexandra, Krieger, Sophie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 86
container_issue 1
container_start_page 86
container_title BMC genomics
container_volume 21
creator Leman, Raphaël
Tubeuf, Hélène
Raad, Sabine
Tournier, Isabelle
Derambure, Céline
Lanos, Raphaël
Gaildrat, Pascaline
Castelain, Gaia
Hauchard, Julie
Killian, Audrey
Baert-Desurmont, Stéphanie
Legros, Angelina
Goardon, Nicolas
Quesnelle, Céline
Ricou, Agathe
Castera, Laurent
Vaur, Dominique
Le Gac, Gérald
Ka, Chandran
Fichou, Yann
Bonnet-Dorion, Françoise
Sevenet, Nicolas
Guillaud-Bataille, Marine
Boutry-Kryza, Nadia
Schultz, Inès
Caux-Moncoutier, Virginie
Rossing, Maria
Walker, Logan C
Spurdle, Amanda B
Houdayer, Claude
Martins, Alexandra
Krieger, Sophie
description Branch points (BPs) map within short motifs upstream of acceptor splice sites (3'ss) and are essential for splicing of pre-mature mRNA. Several BP-dedicated bioinformatics tools, including HSF, SVM-BPfinder, BPP, Branchpointer, LaBranchoR and RNABPS were developed during the last decade. Here, we evaluated their capability to detect the position of BPs, and also to predict the impact on splicing of variants occurring upstream of 3'ss. We used a large set of constitutive and alternative human 3'ss collected from Ensembl (n = 264,787 3'ss) and from in-house RNAseq experiments (n = 51,986 3'ss). We also gathered an unprecedented collection of functional splicing data for 120 variants (62 unpublished) occurring in BP areas of disease-causing genes. Branchpointer showed the best performance to detect the relevant BPs upstream of constitutive and alternative 3'ss (99.48 and 65.84% accuracies, respectively). For variants occurring in a BP area, BPP emerged as having the best performance to predict effects on mRNA splicing, with an accuracy of 89.17%. Our investigations revealed that Branchpointer was optimal to detect BPs upstream of 3'ss, and that BPP was most relevant to predict splicing alteration due to variants in the BP area.
doi_str_mv 10.1186/s12864-020-6484-5
format Article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_gale_infotracmisc_A616352643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A616352643</galeid><doaj_id>oai_doaj_org_article_da6b4502084e4b2a87009788da78c331</doaj_id><sourcerecordid>A616352643</sourcerecordid><originalsourceid>FETCH-LOGICAL-c628t-1f2b4360879664e4de6e94c01a0a87fcb8d41815ae28479d2f607085cec87d393</originalsourceid><addsrcrecordid>eNptkl1r2zAUhs3YWNtsP2A3w7Cb9cKdvizJN4NQtjYQGOzjWhxLcqLgWJlkh-bfT07SUpdZYMvH7_sc-_XJsg8Y3WAs-ZeIieSsQAQVnElWlK-yS8wELgjm7PWz_UV2FeMGISwkKd9mFxRXFcEVvsziPEYb49Z2fe6bvA7Q6XW-8y7d74I1TvfOd3nvfRvT-bGW79aH6HzrV05DO7HFHDqT92vrQg5tbwMcCfUh30NwkATvsjcNtNG-P19n2Z_v337f3hfLH3eL2_my0JzIvsANqRnlSIqKc2aZsdxWTCMMCKRodC0NwxKXYIlkojKk4UggWWqrpTC0orNsceIaDxu1C24L4aA8OHUs-LBSEHqnW6sM8JqVKUiZGtUk8RGqhJQGhNSU4sT6emLthnprjU55BWgn0OmTzq3Vyu8Vr6SkQibA9QmwfmG7ny_VWEOUY56O_djs87lZ8H8HG3u1dVHbtoXO-iEqQpkklDNKk_TTC-nGD6FLsSZVKRhh7Nj8rFpB-ljXNT69ox6hap660pKMsFl28x9VWsZunfadbVyqTwzXE0PS9PahX8EQo1r8-jnV4pNWBx9jsM1TCBipcZrVaZpV-glqnGZVJs_H56E_OR7Hl_4DuQTtrw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357424478</pqid></control><display><type>article</type><title>Assessment of branch point prediction tools to predict physiological branch points and their alteration by variants</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><creator>Leman, Raphaël ; Tubeuf, Hélène ; Raad, Sabine ; Tournier, Isabelle ; Derambure, Céline ; Lanos, Raphaël ; Gaildrat, Pascaline ; Castelain, Gaia ; Hauchard, Julie ; Killian, Audrey ; Baert-Desurmont, Stéphanie ; Legros, Angelina ; Goardon, Nicolas ; Quesnelle, Céline ; Ricou, Agathe ; Castera, Laurent ; Vaur, Dominique ; Le Gac, Gérald ; Ka, Chandran ; Fichou, Yann ; Bonnet-Dorion, Françoise ; Sevenet, Nicolas ; Guillaud-Bataille, Marine ; Boutry-Kryza, Nadia ; Schultz, Inès ; Caux-Moncoutier, Virginie ; Rossing, Maria ; Walker, Logan C ; Spurdle, Amanda B ; Houdayer, Claude ; Martins, Alexandra ; Krieger, Sophie</creator><creatorcontrib>Leman, Raphaël ; Tubeuf, Hélène ; Raad, Sabine ; Tournier, Isabelle ; Derambure, Céline ; Lanos, Raphaël ; Gaildrat, Pascaline ; Castelain, Gaia ; Hauchard, Julie ; Killian, Audrey ; Baert-Desurmont, Stéphanie ; Legros, Angelina ; Goardon, Nicolas ; Quesnelle, Céline ; Ricou, Agathe ; Castera, Laurent ; Vaur, Dominique ; Le Gac, Gérald ; Ka, Chandran ; Fichou, Yann ; Bonnet-Dorion, Françoise ; Sevenet, Nicolas ; Guillaud-Bataille, Marine ; Boutry-Kryza, Nadia ; Schultz, Inès ; Caux-Moncoutier, Virginie ; Rossing, Maria ; Walker, Logan C ; Spurdle, Amanda B ; Houdayer, Claude ; Martins, Alexandra ; Krieger, Sophie</creatorcontrib><description>Branch points (BPs) map within short motifs upstream of acceptor splice sites (3'ss) and are essential for splicing of pre-mature mRNA. Several BP-dedicated bioinformatics tools, including HSF, SVM-BPfinder, BPP, Branchpointer, LaBranchoR and RNABPS were developed during the last decade. Here, we evaluated their capability to detect the position of BPs, and also to predict the impact on splicing of variants occurring upstream of 3'ss. We used a large set of constitutive and alternative human 3'ss collected from Ensembl (n = 264,787 3'ss) and from in-house RNAseq experiments (n = 51,986 3'ss). We also gathered an unprecedented collection of functional splicing data for 120 variants (62 unpublished) occurring in BP areas of disease-causing genes. Branchpointer showed the best performance to detect the relevant BPs upstream of constitutive and alternative 3'ss (99.48 and 65.84% accuracies, respectively). For variants occurring in a BP area, BPP emerged as having the best performance to predict effects on mRNA splicing, with an accuracy of 89.17%. Our investigations revealed that Branchpointer was optimal to detect BPs upstream of 3'ss, and that BPP was most relevant to predict splicing alteration due to variants in the BP area.</description><identifier>ISSN: 1471-2164</identifier><identifier>EISSN: 1471-2164</identifier><identifier>DOI: 10.1186/s12864-020-6484-5</identifier><identifier>PMID: 31992191</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Accuracy ; Adenosine ; Algorithms ; Benchmark ; Benchmarking ; Bioinformatics ; Branch point ; Computational biology ; Datasets ; Diseases ; Evaluation ; Genes ; Genomics ; HSF ; Life Sciences ; Messenger RNA ; Methods ; mRNA ; Open source software ; Physiology ; Prediction ; RNA ; RNA sequencing ; RNA splicing ; Scientific software ; Splicing ; SVM-BPfinder</subject><ispartof>BMC genomics, 2020-01, Vol.21 (1), p.86-86, Article 86</ispartof><rights>COPYRIGHT 2020 BioMed Central Ltd.</rights><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>The Author(s). 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c628t-1f2b4360879664e4de6e94c01a0a87fcb8d41815ae28479d2f607085cec87d393</citedby><cites>FETCH-LOGICAL-c628t-1f2b4360879664e4de6e94c01a0a87fcb8d41815ae28479d2f607085cec87d393</cites><orcidid>0000-0003-1978-7133 ; 0000-0002-5104-9125 ; 0000-0001-6671-1567 ; 0000-0001-7610-7355 ; 0000-0003-3236-7280</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6988378/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6988378/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31992191$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03616666$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Leman, Raphaël</creatorcontrib><creatorcontrib>Tubeuf, Hélène</creatorcontrib><creatorcontrib>Raad, Sabine</creatorcontrib><creatorcontrib>Tournier, Isabelle</creatorcontrib><creatorcontrib>Derambure, Céline</creatorcontrib><creatorcontrib>Lanos, Raphaël</creatorcontrib><creatorcontrib>Gaildrat, Pascaline</creatorcontrib><creatorcontrib>Castelain, Gaia</creatorcontrib><creatorcontrib>Hauchard, Julie</creatorcontrib><creatorcontrib>Killian, Audrey</creatorcontrib><creatorcontrib>Baert-Desurmont, Stéphanie</creatorcontrib><creatorcontrib>Legros, Angelina</creatorcontrib><creatorcontrib>Goardon, Nicolas</creatorcontrib><creatorcontrib>Quesnelle, Céline</creatorcontrib><creatorcontrib>Ricou, Agathe</creatorcontrib><creatorcontrib>Castera, Laurent</creatorcontrib><creatorcontrib>Vaur, Dominique</creatorcontrib><creatorcontrib>Le Gac, Gérald</creatorcontrib><creatorcontrib>Ka, Chandran</creatorcontrib><creatorcontrib>Fichou, Yann</creatorcontrib><creatorcontrib>Bonnet-Dorion, Françoise</creatorcontrib><creatorcontrib>Sevenet, Nicolas</creatorcontrib><creatorcontrib>Guillaud-Bataille, Marine</creatorcontrib><creatorcontrib>Boutry-Kryza, Nadia</creatorcontrib><creatorcontrib>Schultz, Inès</creatorcontrib><creatorcontrib>Caux-Moncoutier, Virginie</creatorcontrib><creatorcontrib>Rossing, Maria</creatorcontrib><creatorcontrib>Walker, Logan C</creatorcontrib><creatorcontrib>Spurdle, Amanda B</creatorcontrib><creatorcontrib>Houdayer, Claude</creatorcontrib><creatorcontrib>Martins, Alexandra</creatorcontrib><creatorcontrib>Krieger, Sophie</creatorcontrib><title>Assessment of branch point prediction tools to predict physiological branch points and their alteration by variants</title><title>BMC genomics</title><addtitle>BMC Genomics</addtitle><description>Branch points (BPs) map within short motifs upstream of acceptor splice sites (3'ss) and are essential for splicing of pre-mature mRNA. Several BP-dedicated bioinformatics tools, including HSF, SVM-BPfinder, BPP, Branchpointer, LaBranchoR and RNABPS were developed during the last decade. Here, we evaluated their capability to detect the position of BPs, and also to predict the impact on splicing of variants occurring upstream of 3'ss. We used a large set of constitutive and alternative human 3'ss collected from Ensembl (n = 264,787 3'ss) and from in-house RNAseq experiments (n = 51,986 3'ss). We also gathered an unprecedented collection of functional splicing data for 120 variants (62 unpublished) occurring in BP areas of disease-causing genes. Branchpointer showed the best performance to detect the relevant BPs upstream of constitutive and alternative 3'ss (99.48 and 65.84% accuracies, respectively). For variants occurring in a BP area, BPP emerged as having the best performance to predict effects on mRNA splicing, with an accuracy of 89.17%. Our investigations revealed that Branchpointer was optimal to detect BPs upstream of 3'ss, and that BPP was most relevant to predict splicing alteration due to variants in the BP area.</description><subject>Accuracy</subject><subject>Adenosine</subject><subject>Algorithms</subject><subject>Benchmark</subject><subject>Benchmarking</subject><subject>Bioinformatics</subject><subject>Branch point</subject><subject>Computational biology</subject><subject>Datasets</subject><subject>Diseases</subject><subject>Evaluation</subject><subject>Genes</subject><subject>Genomics</subject><subject>HSF</subject><subject>Life Sciences</subject><subject>Messenger RNA</subject><subject>Methods</subject><subject>mRNA</subject><subject>Open source software</subject><subject>Physiology</subject><subject>Prediction</subject><subject>RNA</subject><subject>RNA sequencing</subject><subject>RNA splicing</subject><subject>Scientific software</subject><subject>Splicing</subject><subject>SVM-BPfinder</subject><issn>1471-2164</issn><issn>1471-2164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptkl1r2zAUhs3YWNtsP2A3w7Cb9cKdvizJN4NQtjYQGOzjWhxLcqLgWJlkh-bfT07SUpdZYMvH7_sc-_XJsg8Y3WAs-ZeIieSsQAQVnElWlK-yS8wELgjm7PWz_UV2FeMGISwkKd9mFxRXFcEVvsziPEYb49Z2fe6bvA7Q6XW-8y7d74I1TvfOd3nvfRvT-bGW79aH6HzrV05DO7HFHDqT92vrQg5tbwMcCfUh30NwkATvsjcNtNG-P19n2Z_v337f3hfLH3eL2_my0JzIvsANqRnlSIqKc2aZsdxWTCMMCKRodC0NwxKXYIlkojKk4UggWWqrpTC0orNsceIaDxu1C24L4aA8OHUs-LBSEHqnW6sM8JqVKUiZGtUk8RGqhJQGhNSU4sT6emLthnprjU55BWgn0OmTzq3Vyu8Vr6SkQibA9QmwfmG7ny_VWEOUY56O_djs87lZ8H8HG3u1dVHbtoXO-iEqQpkklDNKk_TTC-nGD6FLsSZVKRhh7Nj8rFpB-ljXNT69ox6hap660pKMsFl28x9VWsZunfadbVyqTwzXE0PS9PahX8EQo1r8-jnV4pNWBx9jsM1TCBipcZrVaZpV-glqnGZVJs_H56E_OR7Hl_4DuQTtrw</recordid><startdate>20200128</startdate><enddate>20200128</enddate><creator>Leman, Raphaël</creator><creator>Tubeuf, Hélène</creator><creator>Raad, Sabine</creator><creator>Tournier, Isabelle</creator><creator>Derambure, Céline</creator><creator>Lanos, Raphaël</creator><creator>Gaildrat, Pascaline</creator><creator>Castelain, Gaia</creator><creator>Hauchard, Julie</creator><creator>Killian, Audrey</creator><creator>Baert-Desurmont, Stéphanie</creator><creator>Legros, Angelina</creator><creator>Goardon, Nicolas</creator><creator>Quesnelle, Céline</creator><creator>Ricou, Agathe</creator><creator>Castera, Laurent</creator><creator>Vaur, Dominique</creator><creator>Le Gac, Gérald</creator><creator>Ka, Chandran</creator><creator>Fichou, Yann</creator><creator>Bonnet-Dorion, Françoise</creator><creator>Sevenet, Nicolas</creator><creator>Guillaud-Bataille, Marine</creator><creator>Boutry-Kryza, Nadia</creator><creator>Schultz, Inès</creator><creator>Caux-Moncoutier, Virginie</creator><creator>Rossing, Maria</creator><creator>Walker, Logan C</creator><creator>Spurdle, Amanda B</creator><creator>Houdayer, Claude</creator><creator>Martins, Alexandra</creator><creator>Krieger, Sophie</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1978-7133</orcidid><orcidid>https://orcid.org/0000-0002-5104-9125</orcidid><orcidid>https://orcid.org/0000-0001-6671-1567</orcidid><orcidid>https://orcid.org/0000-0001-7610-7355</orcidid><orcidid>https://orcid.org/0000-0003-3236-7280</orcidid></search><sort><creationdate>20200128</creationdate><title>Assessment of branch point prediction tools to predict physiological branch points and their alteration by variants</title><author>Leman, Raphaël ; Tubeuf, Hélène ; Raad, Sabine ; Tournier, Isabelle ; Derambure, Céline ; Lanos, Raphaël ; Gaildrat, Pascaline ; Castelain, Gaia ; Hauchard, Julie ; Killian, Audrey ; Baert-Desurmont, Stéphanie ; Legros, Angelina ; Goardon, Nicolas ; Quesnelle, Céline ; Ricou, Agathe ; Castera, Laurent ; Vaur, Dominique ; Le Gac, Gérald ; Ka, Chandran ; Fichou, Yann ; Bonnet-Dorion, Françoise ; Sevenet, Nicolas ; Guillaud-Bataille, Marine ; Boutry-Kryza, Nadia ; Schultz, Inès ; Caux-Moncoutier, Virginie ; Rossing, Maria ; Walker, Logan C ; Spurdle, Amanda B ; Houdayer, Claude ; Martins, Alexandra ; Krieger, Sophie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c628t-1f2b4360879664e4de6e94c01a0a87fcb8d41815ae28479d2f607085cec87d393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Adenosine</topic><topic>Algorithms</topic><topic>Benchmark</topic><topic>Benchmarking</topic><topic>Bioinformatics</topic><topic>Branch point</topic><topic>Computational biology</topic><topic>Datasets</topic><topic>Diseases</topic><topic>Evaluation</topic><topic>Genes</topic><topic>Genomics</topic><topic>HSF</topic><topic>Life Sciences</topic><topic>Messenger RNA</topic><topic>Methods</topic><topic>mRNA</topic><topic>Open source software</topic><topic>Physiology</topic><topic>Prediction</topic><topic>RNA</topic><topic>RNA sequencing</topic><topic>RNA splicing</topic><topic>Scientific software</topic><topic>Splicing</topic><topic>SVM-BPfinder</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leman, Raphaël</creatorcontrib><creatorcontrib>Tubeuf, Hélène</creatorcontrib><creatorcontrib>Raad, Sabine</creatorcontrib><creatorcontrib>Tournier, Isabelle</creatorcontrib><creatorcontrib>Derambure, Céline</creatorcontrib><creatorcontrib>Lanos, Raphaël</creatorcontrib><creatorcontrib>Gaildrat, Pascaline</creatorcontrib><creatorcontrib>Castelain, Gaia</creatorcontrib><creatorcontrib>Hauchard, Julie</creatorcontrib><creatorcontrib>Killian, Audrey</creatorcontrib><creatorcontrib>Baert-Desurmont, Stéphanie</creatorcontrib><creatorcontrib>Legros, Angelina</creatorcontrib><creatorcontrib>Goardon, Nicolas</creatorcontrib><creatorcontrib>Quesnelle, Céline</creatorcontrib><creatorcontrib>Ricou, Agathe</creatorcontrib><creatorcontrib>Castera, Laurent</creatorcontrib><creatorcontrib>Vaur, Dominique</creatorcontrib><creatorcontrib>Le Gac, Gérald</creatorcontrib><creatorcontrib>Ka, Chandran</creatorcontrib><creatorcontrib>Fichou, Yann</creatorcontrib><creatorcontrib>Bonnet-Dorion, Françoise</creatorcontrib><creatorcontrib>Sevenet, Nicolas</creatorcontrib><creatorcontrib>Guillaud-Bataille, Marine</creatorcontrib><creatorcontrib>Boutry-Kryza, Nadia</creatorcontrib><creatorcontrib>Schultz, Inès</creatorcontrib><creatorcontrib>Caux-Moncoutier, Virginie</creatorcontrib><creatorcontrib>Rossing, Maria</creatorcontrib><creatorcontrib>Walker, Logan C</creatorcontrib><creatorcontrib>Spurdle, Amanda B</creatorcontrib><creatorcontrib>Houdayer, Claude</creatorcontrib><creatorcontrib>Martins, Alexandra</creatorcontrib><creatorcontrib>Krieger, Sophie</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC genomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leman, Raphaël</au><au>Tubeuf, Hélène</au><au>Raad, Sabine</au><au>Tournier, Isabelle</au><au>Derambure, Céline</au><au>Lanos, Raphaël</au><au>Gaildrat, Pascaline</au><au>Castelain, Gaia</au><au>Hauchard, Julie</au><au>Killian, Audrey</au><au>Baert-Desurmont, Stéphanie</au><au>Legros, Angelina</au><au>Goardon, Nicolas</au><au>Quesnelle, Céline</au><au>Ricou, Agathe</au><au>Castera, Laurent</au><au>Vaur, Dominique</au><au>Le Gac, Gérald</au><au>Ka, Chandran</au><au>Fichou, Yann</au><au>Bonnet-Dorion, Françoise</au><au>Sevenet, Nicolas</au><au>Guillaud-Bataille, Marine</au><au>Boutry-Kryza, Nadia</au><au>Schultz, Inès</au><au>Caux-Moncoutier, Virginie</au><au>Rossing, Maria</au><au>Walker, Logan C</au><au>Spurdle, Amanda B</au><au>Houdayer, Claude</au><au>Martins, Alexandra</au><au>Krieger, Sophie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of branch point prediction tools to predict physiological branch points and their alteration by variants</atitle><jtitle>BMC genomics</jtitle><addtitle>BMC Genomics</addtitle><date>2020-01-28</date><risdate>2020</risdate><volume>21</volume><issue>1</issue><spage>86</spage><epage>86</epage><pages>86-86</pages><artnum>86</artnum><issn>1471-2164</issn><eissn>1471-2164</eissn><abstract>Branch points (BPs) map within short motifs upstream of acceptor splice sites (3'ss) and are essential for splicing of pre-mature mRNA. Several BP-dedicated bioinformatics tools, including HSF, SVM-BPfinder, BPP, Branchpointer, LaBranchoR and RNABPS were developed during the last decade. Here, we evaluated their capability to detect the position of BPs, and also to predict the impact on splicing of variants occurring upstream of 3'ss. We used a large set of constitutive and alternative human 3'ss collected from Ensembl (n = 264,787 3'ss) and from in-house RNAseq experiments (n = 51,986 3'ss). We also gathered an unprecedented collection of functional splicing data for 120 variants (62 unpublished) occurring in BP areas of disease-causing genes. Branchpointer showed the best performance to detect the relevant BPs upstream of constitutive and alternative 3'ss (99.48 and 65.84% accuracies, respectively). For variants occurring in a BP area, BPP emerged as having the best performance to predict effects on mRNA splicing, with an accuracy of 89.17%. Our investigations revealed that Branchpointer was optimal to detect BPs upstream of 3'ss, and that BPP was most relevant to predict splicing alteration due to variants in the BP area.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>31992191</pmid><doi>10.1186/s12864-020-6484-5</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1978-7133</orcidid><orcidid>https://orcid.org/0000-0002-5104-9125</orcidid><orcidid>https://orcid.org/0000-0001-6671-1567</orcidid><orcidid>https://orcid.org/0000-0001-7610-7355</orcidid><orcidid>https://orcid.org/0000-0003-3236-7280</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-2164
ispartof BMC genomics, 2020-01, Vol.21 (1), p.86-86, Article 86
issn 1471-2164
1471-2164
language eng
recordid cdi_gale_infotracmisc_A616352643
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; SpringerLink Journals - AutoHoldings; PubMed Central Open Access; Springer Nature OA Free Journals
subjects Accuracy
Adenosine
Algorithms
Benchmark
Benchmarking
Bioinformatics
Branch point
Computational biology
Datasets
Diseases
Evaluation
Genes
Genomics
HSF
Life Sciences
Messenger RNA
Methods
mRNA
Open source software
Physiology
Prediction
RNA
RNA sequencing
RNA splicing
Scientific software
Splicing
SVM-BPfinder
title Assessment of branch point prediction tools to predict physiological branch points and their alteration by variants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A42%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20branch%20point%20prediction%20tools%20to%20predict%20physiological%20branch%20points%20and%20their%20alteration%20by%20variants&rft.jtitle=BMC%20genomics&rft.au=Leman,%20Rapha%C3%ABl&rft.date=2020-01-28&rft.volume=21&rft.issue=1&rft.spage=86&rft.epage=86&rft.pages=86-86&rft.artnum=86&rft.issn=1471-2164&rft.eissn=1471-2164&rft_id=info:doi/10.1186/s12864-020-6484-5&rft_dat=%3Cgale_doaj_%3EA616352643%3C/gale_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2357424478&rft_id=info:pmid/31992191&rft_galeid=A616352643&rft_doaj_id=oai_doaj_org_article_da6b4502084e4b2a87009788da78c331&rfr_iscdi=true