Ultrasound-sensitizing nanoparticle complex for overcoming the blood-brain barrier: an effective drug delivery system

Background: Crossing the blood--brain barrier (BBB) is crucial for drug delivery to the brain and for treatment of brain tumors, such as glioblastoma, the most common of all primary malignant brain tumors. Microbubble (MB) is oscillated and destroyed by controlling ultrasound (US) parameters. This o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of nanomedicine 2019-05, p.3743
Hauptverfasser: Ha, Shin-Woo, Hwang, Kihwan, Jin, Jun, Cho, Ae-Sin, Kim, Tae Yoon, Hwang, Sung Ii, Lee, Hakjong, Kim, Chae-Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 3743
container_title International journal of nanomedicine
container_volume
creator Ha, Shin-Woo
Hwang, Kihwan
Jin, Jun
Cho, Ae-Sin
Kim, Tae Yoon
Hwang, Sung Ii
Lee, Hakjong
Kim, Chae-Yong
description Background: Crossing the blood--brain barrier (BBB) is crucial for drug delivery to the brain and for treatment of brain tumors, such as glioblastoma, the most common of all primary malignant brain tumors. Microbubble (MB) is oscillated and destroyed by controlling ultrasound (US) parameters. This oscillation and destruction of MB can open the BBB transiently, and a drug can be delivered to the brain. Materials and methods: For testing the efficiency of delivery to the brain, we synthesized a US-sensitizing nanoparticle (NP) complex via chemically binding MBs and NPs for the BBB opening, including near-infrared dye-incorporated albumin nanoparticles (NIR-Alb NPs) for fluorescence detection. Results: The human-derived, biocompatible NIR-Alb NPs did not show significant cytotoxicity to 500 [micro]g/mL for 3 days in four human glioma cell lines. In an in vivo animal study, some US parameters were investigated to determine optimal conditions. The optimized US conditions were applied in a U87MG orthotopic mouse model. We found that the fluorescence intensity in the brain was 1.5 times higher than in the control group. Conclusion: Our US-sensitizing NP complex and US technique could become one of the critical technologies for drug delivery to the brain. Keywords: blood--brain barrier, ultrasound, nanoparticle, microbubble, complex, drug delivery
doi_str_mv 10.2147/IJN.SI93258
format Article
fullrecord <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracmisc_A610844416</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A610844416</galeid><sourcerecordid>A610844416</sourcerecordid><originalsourceid>FETCH-LOGICAL-g676-4cc51f61b7f94fef166f76544067d5bd8c96da96f274d1aabf927cc2a5d55cde3</originalsourceid><addsrcrecordid>eNptj0tPwzAQhH0AiVI48QcscU6JUz8SblXFo6iCA-VcOfZuMHLsyk4r4NcTBAcOaA87M_p2pCXkgpWzinF1tXp4nD2vmnkl6iMyYUzVRVWy-Qk5zfmtLIWqZTMh-xc_JJ3jPtgiQ8hucJ8udDToEHc6Dc54oCb2Ow_vFGOi8QBp9N_M8Aq09THaok3aBdrqlByka6oDBUQwgzsAtWnfUQt-1OmD5o88QH9GjlH7DOe_e0o2tzeb5X2xfrpbLRfropNKFtwYwVCyVmHDEZBJiUoKzkuprGhtbRppdSOxUtwyrVtsKmVMpYUVwliYT8nlT22nPWxdwDj-anqXzXYhWVlzzpkcqdk_1DgWemdiAHRj_ufgC8Qjbbs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ultrasound-sensitizing nanoparticle complex for overcoming the blood-brain barrier: an effective drug delivery system</title><source>Taylor &amp; Francis Open Access</source><source>DOVE Medical Press Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Ha, Shin-Woo ; Hwang, Kihwan ; Jin, Jun ; Cho, Ae-Sin ; Kim, Tae Yoon ; Hwang, Sung Ii ; Lee, Hakjong ; Kim, Chae-Yong</creator><creatorcontrib>Ha, Shin-Woo ; Hwang, Kihwan ; Jin, Jun ; Cho, Ae-Sin ; Kim, Tae Yoon ; Hwang, Sung Ii ; Lee, Hakjong ; Kim, Chae-Yong</creatorcontrib><description>Background: Crossing the blood--brain barrier (BBB) is crucial for drug delivery to the brain and for treatment of brain tumors, such as glioblastoma, the most common of all primary malignant brain tumors. Microbubble (MB) is oscillated and destroyed by controlling ultrasound (US) parameters. This oscillation and destruction of MB can open the BBB transiently, and a drug can be delivered to the brain. Materials and methods: For testing the efficiency of delivery to the brain, we synthesized a US-sensitizing nanoparticle (NP) complex via chemically binding MBs and NPs for the BBB opening, including near-infrared dye-incorporated albumin nanoparticles (NIR-Alb NPs) for fluorescence detection. Results: The human-derived, biocompatible NIR-Alb NPs did not show significant cytotoxicity to 500 [micro]g/mL for 3 days in four human glioma cell lines. In an in vivo animal study, some US parameters were investigated to determine optimal conditions. The optimized US conditions were applied in a U87MG orthotopic mouse model. We found that the fluorescence intensity in the brain was 1.5 times higher than in the control group. Conclusion: Our US-sensitizing NP complex and US technique could become one of the critical technologies for drug delivery to the brain. Keywords: blood--brain barrier, ultrasound, nanoparticle, microbubble, complex, drug delivery</description><identifier>ISSN: 1178-2013</identifier><identifier>DOI: 10.2147/IJN.SI93258</identifier><language>eng</language><publisher>Dove Medical Press Limited</publisher><subject>Albumin ; Brain tumors ; Drug delivery systems ; Fluorescence ; Glioblastomas ; Gliomas ; Nanoparticles ; Technology ; Tumors</subject><ispartof>International journal of nanomedicine, 2019-05, p.3743</ispartof><rights>COPYRIGHT 2019 Dove Medical Press Limited</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Ha, Shin-Woo</creatorcontrib><creatorcontrib>Hwang, Kihwan</creatorcontrib><creatorcontrib>Jin, Jun</creatorcontrib><creatorcontrib>Cho, Ae-Sin</creatorcontrib><creatorcontrib>Kim, Tae Yoon</creatorcontrib><creatorcontrib>Hwang, Sung Ii</creatorcontrib><creatorcontrib>Lee, Hakjong</creatorcontrib><creatorcontrib>Kim, Chae-Yong</creatorcontrib><title>Ultrasound-sensitizing nanoparticle complex for overcoming the blood-brain barrier: an effective drug delivery system</title><title>International journal of nanomedicine</title><description>Background: Crossing the blood--brain barrier (BBB) is crucial for drug delivery to the brain and for treatment of brain tumors, such as glioblastoma, the most common of all primary malignant brain tumors. Microbubble (MB) is oscillated and destroyed by controlling ultrasound (US) parameters. This oscillation and destruction of MB can open the BBB transiently, and a drug can be delivered to the brain. Materials and methods: For testing the efficiency of delivery to the brain, we synthesized a US-sensitizing nanoparticle (NP) complex via chemically binding MBs and NPs for the BBB opening, including near-infrared dye-incorporated albumin nanoparticles (NIR-Alb NPs) for fluorescence detection. Results: The human-derived, biocompatible NIR-Alb NPs did not show significant cytotoxicity to 500 [micro]g/mL for 3 days in four human glioma cell lines. In an in vivo animal study, some US parameters were investigated to determine optimal conditions. The optimized US conditions were applied in a U87MG orthotopic mouse model. We found that the fluorescence intensity in the brain was 1.5 times higher than in the control group. Conclusion: Our US-sensitizing NP complex and US technique could become one of the critical technologies for drug delivery to the brain. Keywords: blood--brain barrier, ultrasound, nanoparticle, microbubble, complex, drug delivery</description><subject>Albumin</subject><subject>Brain tumors</subject><subject>Drug delivery systems</subject><subject>Fluorescence</subject><subject>Glioblastomas</subject><subject>Gliomas</subject><subject>Nanoparticles</subject><subject>Technology</subject><subject>Tumors</subject><issn>1178-2013</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNptj0tPwzAQhH0AiVI48QcscU6JUz8SblXFo6iCA-VcOfZuMHLsyk4r4NcTBAcOaA87M_p2pCXkgpWzinF1tXp4nD2vmnkl6iMyYUzVRVWy-Qk5zfmtLIWqZTMh-xc_JJ3jPtgiQ8hucJ8udDToEHc6Dc54oCb2Ow_vFGOi8QBp9N_M8Aq09THaok3aBdrqlByka6oDBUQwgzsAtWnfUQt-1OmD5o88QH9GjlH7DOe_e0o2tzeb5X2xfrpbLRfropNKFtwYwVCyVmHDEZBJiUoKzkuprGhtbRppdSOxUtwyrVtsKmVMpYUVwliYT8nlT22nPWxdwDj-anqXzXYhWVlzzpkcqdk_1DgWemdiAHRj_ufgC8Qjbbs</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Ha, Shin-Woo</creator><creator>Hwang, Kihwan</creator><creator>Jin, Jun</creator><creator>Cho, Ae-Sin</creator><creator>Kim, Tae Yoon</creator><creator>Hwang, Sung Ii</creator><creator>Lee, Hakjong</creator><creator>Kim, Chae-Yong</creator><general>Dove Medical Press Limited</general><scope/></search><sort><creationdate>20190501</creationdate><title>Ultrasound-sensitizing nanoparticle complex for overcoming the blood-brain barrier: an effective drug delivery system</title><author>Ha, Shin-Woo ; Hwang, Kihwan ; Jin, Jun ; Cho, Ae-Sin ; Kim, Tae Yoon ; Hwang, Sung Ii ; Lee, Hakjong ; Kim, Chae-Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g676-4cc51f61b7f94fef166f76544067d5bd8c96da96f274d1aabf927cc2a5d55cde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Albumin</topic><topic>Brain tumors</topic><topic>Drug delivery systems</topic><topic>Fluorescence</topic><topic>Glioblastomas</topic><topic>Gliomas</topic><topic>Nanoparticles</topic><topic>Technology</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ha, Shin-Woo</creatorcontrib><creatorcontrib>Hwang, Kihwan</creatorcontrib><creatorcontrib>Jin, Jun</creatorcontrib><creatorcontrib>Cho, Ae-Sin</creatorcontrib><creatorcontrib>Kim, Tae Yoon</creatorcontrib><creatorcontrib>Hwang, Sung Ii</creatorcontrib><creatorcontrib>Lee, Hakjong</creatorcontrib><creatorcontrib>Kim, Chae-Yong</creatorcontrib><jtitle>International journal of nanomedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ha, Shin-Woo</au><au>Hwang, Kihwan</au><au>Jin, Jun</au><au>Cho, Ae-Sin</au><au>Kim, Tae Yoon</au><au>Hwang, Sung Ii</au><au>Lee, Hakjong</au><au>Kim, Chae-Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrasound-sensitizing nanoparticle complex for overcoming the blood-brain barrier: an effective drug delivery system</atitle><jtitle>International journal of nanomedicine</jtitle><date>2019-05-01</date><risdate>2019</risdate><spage>3743</spage><pages>3743-</pages><issn>1178-2013</issn><abstract>Background: Crossing the blood--brain barrier (BBB) is crucial for drug delivery to the brain and for treatment of brain tumors, such as glioblastoma, the most common of all primary malignant brain tumors. Microbubble (MB) is oscillated and destroyed by controlling ultrasound (US) parameters. This oscillation and destruction of MB can open the BBB transiently, and a drug can be delivered to the brain. Materials and methods: For testing the efficiency of delivery to the brain, we synthesized a US-sensitizing nanoparticle (NP) complex via chemically binding MBs and NPs for the BBB opening, including near-infrared dye-incorporated albumin nanoparticles (NIR-Alb NPs) for fluorescence detection. Results: The human-derived, biocompatible NIR-Alb NPs did not show significant cytotoxicity to 500 [micro]g/mL for 3 days in four human glioma cell lines. In an in vivo animal study, some US parameters were investigated to determine optimal conditions. The optimized US conditions were applied in a U87MG orthotopic mouse model. We found that the fluorescence intensity in the brain was 1.5 times higher than in the control group. Conclusion: Our US-sensitizing NP complex and US technique could become one of the critical technologies for drug delivery to the brain. Keywords: blood--brain barrier, ultrasound, nanoparticle, microbubble, complex, drug delivery</abstract><pub>Dove Medical Press Limited</pub><doi>10.2147/IJN.SI93258</doi></addata></record>
fulltext fulltext
identifier ISSN: 1178-2013
ispartof International journal of nanomedicine, 2019-05, p.3743
issn 1178-2013
language eng
recordid cdi_gale_infotracmisc_A610844416
source Taylor & Francis Open Access; DOVE Medical Press Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
subjects Albumin
Brain tumors
Drug delivery systems
Fluorescence
Glioblastomas
Gliomas
Nanoparticles
Technology
Tumors
title Ultrasound-sensitizing nanoparticle complex for overcoming the blood-brain barrier: an effective drug delivery system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A07%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrasound-sensitizing%20nanoparticle%20complex%20for%20overcoming%20the%20blood-brain%20barrier:%20an%20effective%20drug%20delivery%20system&rft.jtitle=International%20journal%20of%20nanomedicine&rft.au=Ha,%20Shin-Woo&rft.date=2019-05-01&rft.spage=3743&rft.pages=3743-&rft.issn=1178-2013&rft_id=info:doi/10.2147/IJN.SI93258&rft_dat=%3Cgale%3EA610844416%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A610844416&rfr_iscdi=true