TESTING CONDITIONS AND ESTIMATING PARAMETERS IN EXTREME VALUE THEORY: APPLICATION TO ENVIRONMENTAL DATA
* Extreme Value Theory has been asserting itself as one of the most important statistical theories for the applied sciences providing a solid theoretical basis for deriving statistical models describing extreme or even rare events. The efficiency of the inference and estimation procedures depends on...
Gespeichert in:
Veröffentlicht in: | Revstat 2019-04, Vol.17 (2), p.187 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 187 |
container_title | Revstat |
container_volume | 17 |
creator | Penalva, Helena Gomes, Dora Prata Neves, M. Manuela Nunes, Sandra |
description | * Extreme Value Theory has been asserting itself as one of the most important statistical theories for the applied sciences providing a solid theoretical basis for deriving statistical models describing extreme or even rare events. The efficiency of the inference and estimation procedures depends on the tail shape of the distribution underlying the data. In this work we will present a review of tests for assessing extreme value conditions and for the choice of the extreme value domain. Motivated by two real environmental problems we will apply those tests showing the need of performing such tests for choosing the most appropriate parameter estimation methods. Key-Words: * Environmental data; extreme values; heavy-tailed distributions; semi-parametric estimation; statistical testing. AMS Subject Classification: * 62G32, 62E20, 62G10. |
format | Article |
fullrecord | <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracmisc_A585449932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A585449932</galeid><sourcerecordid>A585449932</sourcerecordid><originalsourceid>FETCH-LOGICAL-g222t-9ffb36d6af56a6bec2aface52bdf3ae72b03a97c7c23901d30dff1495bbac9483</originalsourceid><addsrcrecordid>eNptjD1rwzAYhD200JDmPwg6u9iSJUfdhK0mAlsythLaKUiyZFzyAXX-P3XaDh363vDC3T13Fy1SkuGY5JA8RKtp-kjmQ2lGULqIBs07LeQGFEqWQgslO8BkCW5uzb6ThrWs5pq3HRAS8Dfd8pqDPat2HOgtV-37C2BNU4mC3XigFeByL1olay41q0DJNHuM7oM5Tn71-5fR7pXrYhtXajODVTxACK8xDcEi0hMTMDHEegdNMM5jaPuAjM-hTZChucsdRDRJe5T0IaQZxdYaR7M1WkZPP7uDOfrDeA6X66dxp3FyB4bXOMsoRXBuPf_TmtX70-guZx_G2f8DfAEvnFqF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>TESTING CONDITIONS AND ESTIMATING PARAMETERS IN EXTREME VALUE THEORY: APPLICATION TO ENVIRONMENTAL DATA</title><source>DOAJ Directory of Open Access Journals</source><creator>Penalva, Helena ; Gomes, Dora Prata ; Neves, M. Manuela ; Nunes, Sandra</creator><creatorcontrib>Penalva, Helena ; Gomes, Dora Prata ; Neves, M. Manuela ; Nunes, Sandra</creatorcontrib><description>* Extreme Value Theory has been asserting itself as one of the most important statistical theories for the applied sciences providing a solid theoretical basis for deriving statistical models describing extreme or even rare events. The efficiency of the inference and estimation procedures depends on the tail shape of the distribution underlying the data. In this work we will present a review of tests for assessing extreme value conditions and for the choice of the extreme value domain. Motivated by two real environmental problems we will apply those tests showing the need of performing such tests for choosing the most appropriate parameter estimation methods. Key-Words: * Environmental data; extreme values; heavy-tailed distributions; semi-parametric estimation; statistical testing. AMS Subject Classification: * 62G32, 62E20, 62G10.</description><identifier>ISSN: 1645-6726</identifier><language>eng</language><publisher>Instituto Nacional de Estatistica</publisher><subject>Environmental impact analysis ; Extreme value theory ; Mathematical research ; Methods</subject><ispartof>Revstat, 2019-04, Vol.17 (2), p.187</ispartof><rights>COPYRIGHT 2019 Instituto Nacional de Estatistica</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Penalva, Helena</creatorcontrib><creatorcontrib>Gomes, Dora Prata</creatorcontrib><creatorcontrib>Neves, M. Manuela</creatorcontrib><creatorcontrib>Nunes, Sandra</creatorcontrib><title>TESTING CONDITIONS AND ESTIMATING PARAMETERS IN EXTREME VALUE THEORY: APPLICATION TO ENVIRONMENTAL DATA</title><title>Revstat</title><description>* Extreme Value Theory has been asserting itself as one of the most important statistical theories for the applied sciences providing a solid theoretical basis for deriving statistical models describing extreme or even rare events. The efficiency of the inference and estimation procedures depends on the tail shape of the distribution underlying the data. In this work we will present a review of tests for assessing extreme value conditions and for the choice of the extreme value domain. Motivated by two real environmental problems we will apply those tests showing the need of performing such tests for choosing the most appropriate parameter estimation methods. Key-Words: * Environmental data; extreme values; heavy-tailed distributions; semi-parametric estimation; statistical testing. AMS Subject Classification: * 62G32, 62E20, 62G10.</description><subject>Environmental impact analysis</subject><subject>Extreme value theory</subject><subject>Mathematical research</subject><subject>Methods</subject><issn>1645-6726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNptjD1rwzAYhD200JDmPwg6u9iSJUfdhK0mAlsythLaKUiyZFzyAXX-P3XaDh363vDC3T13Fy1SkuGY5JA8RKtp-kjmQ2lGULqIBs07LeQGFEqWQgslO8BkCW5uzb6ThrWs5pq3HRAS8Dfd8pqDPat2HOgtV-37C2BNU4mC3XigFeByL1olay41q0DJNHuM7oM5Tn71-5fR7pXrYhtXajODVTxACK8xDcEi0hMTMDHEegdNMM5jaPuAjM-hTZChucsdRDRJe5T0IaQZxdYaR7M1WkZPP7uDOfrDeA6X66dxp3FyB4bXOMsoRXBuPf_TmtX70-guZx_G2f8DfAEvnFqF</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Penalva, Helena</creator><creator>Gomes, Dora Prata</creator><creator>Neves, M. Manuela</creator><creator>Nunes, Sandra</creator><general>Instituto Nacional de Estatistica</general><scope>INF</scope></search><sort><creationdate>20190401</creationdate><title>TESTING CONDITIONS AND ESTIMATING PARAMETERS IN EXTREME VALUE THEORY: APPLICATION TO ENVIRONMENTAL DATA</title><author>Penalva, Helena ; Gomes, Dora Prata ; Neves, M. Manuela ; Nunes, Sandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g222t-9ffb36d6af56a6bec2aface52bdf3ae72b03a97c7c23901d30dff1495bbac9483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Environmental impact analysis</topic><topic>Extreme value theory</topic><topic>Mathematical research</topic><topic>Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Penalva, Helena</creatorcontrib><creatorcontrib>Gomes, Dora Prata</creatorcontrib><creatorcontrib>Neves, M. Manuela</creatorcontrib><creatorcontrib>Nunes, Sandra</creatorcontrib><collection>Gale OneFile: Informe Academico</collection><jtitle>Revstat</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Penalva, Helena</au><au>Gomes, Dora Prata</au><au>Neves, M. Manuela</au><au>Nunes, Sandra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TESTING CONDITIONS AND ESTIMATING PARAMETERS IN EXTREME VALUE THEORY: APPLICATION TO ENVIRONMENTAL DATA</atitle><jtitle>Revstat</jtitle><date>2019-04-01</date><risdate>2019</risdate><volume>17</volume><issue>2</issue><spage>187</spage><pages>187-</pages><issn>1645-6726</issn><abstract>* Extreme Value Theory has been asserting itself as one of the most important statistical theories for the applied sciences providing a solid theoretical basis for deriving statistical models describing extreme or even rare events. The efficiency of the inference and estimation procedures depends on the tail shape of the distribution underlying the data. In this work we will present a review of tests for assessing extreme value conditions and for the choice of the extreme value domain. Motivated by two real environmental problems we will apply those tests showing the need of performing such tests for choosing the most appropriate parameter estimation methods. Key-Words: * Environmental data; extreme values; heavy-tailed distributions; semi-parametric estimation; statistical testing. AMS Subject Classification: * 62G32, 62E20, 62G10.</abstract><pub>Instituto Nacional de Estatistica</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1645-6726 |
ispartof | Revstat, 2019-04, Vol.17 (2), p.187 |
issn | 1645-6726 |
language | eng |
recordid | cdi_gale_infotracmisc_A585449932 |
source | DOAJ Directory of Open Access Journals |
subjects | Environmental impact analysis Extreme value theory Mathematical research Methods |
title | TESTING CONDITIONS AND ESTIMATING PARAMETERS IN EXTREME VALUE THEORY: APPLICATION TO ENVIRONMENTAL DATA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T07%3A09%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TESTING%20CONDITIONS%20AND%20ESTIMATING%20PARAMETERS%20IN%20EXTREME%20VALUE%20THEORY:%20APPLICATION%20TO%20ENVIRONMENTAL%20DATA&rft.jtitle=Revstat&rft.au=Penalva,%20Helena&rft.date=2019-04-01&rft.volume=17&rft.issue=2&rft.spage=187&rft.pages=187-&rft.issn=1645-6726&rft_id=info:doi/&rft_dat=%3Cgale%3EA585449932%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A585449932&rfr_iscdi=true |