TESTING CONDITIONS AND ESTIMATING PARAMETERS IN EXTREME VALUE THEORY: APPLICATION TO ENVIRONMENTAL DATA

* Extreme Value Theory has been asserting itself as one of the most important statistical theories for the applied sciences providing a solid theoretical basis for deriving statistical models describing extreme or even rare events. The efficiency of the inference and estimation procedures depends on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revstat 2019-04, Vol.17 (2), p.187
Hauptverfasser: Penalva, Helena, Gomes, Dora Prata, Neves, M. Manuela, Nunes, Sandra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 187
container_title Revstat
container_volume 17
creator Penalva, Helena
Gomes, Dora Prata
Neves, M. Manuela
Nunes, Sandra
description * Extreme Value Theory has been asserting itself as one of the most important statistical theories for the applied sciences providing a solid theoretical basis for deriving statistical models describing extreme or even rare events. The efficiency of the inference and estimation procedures depends on the tail shape of the distribution underlying the data. In this work we will present a review of tests for assessing extreme value conditions and for the choice of the extreme value domain. Motivated by two real environmental problems we will apply those tests showing the need of performing such tests for choosing the most appropriate parameter estimation methods. Key-Words: * Environmental data; extreme values; heavy-tailed distributions; semi-parametric estimation; statistical testing. AMS Subject Classification: * 62G32, 62E20, 62G10.
format Article
fullrecord <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracmisc_A585449932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A585449932</galeid><sourcerecordid>A585449932</sourcerecordid><originalsourceid>FETCH-LOGICAL-g222t-9ffb36d6af56a6bec2aface52bdf3ae72b03a97c7c23901d30dff1495bbac9483</originalsourceid><addsrcrecordid>eNptjD1rwzAYhD200JDmPwg6u9iSJUfdhK0mAlsythLaKUiyZFzyAXX-P3XaDh363vDC3T13Fy1SkuGY5JA8RKtp-kjmQ2lGULqIBs07LeQGFEqWQgslO8BkCW5uzb6ThrWs5pq3HRAS8Dfd8pqDPat2HOgtV-37C2BNU4mC3XigFeByL1olay41q0DJNHuM7oM5Tn71-5fR7pXrYhtXajODVTxACK8xDcEi0hMTMDHEegdNMM5jaPuAjM-hTZChucsdRDRJe5T0IaQZxdYaR7M1WkZPP7uDOfrDeA6X66dxp3FyB4bXOMsoRXBuPf_TmtX70-guZx_G2f8DfAEvnFqF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>TESTING CONDITIONS AND ESTIMATING PARAMETERS IN EXTREME VALUE THEORY: APPLICATION TO ENVIRONMENTAL DATA</title><source>DOAJ Directory of Open Access Journals</source><creator>Penalva, Helena ; Gomes, Dora Prata ; Neves, M. Manuela ; Nunes, Sandra</creator><creatorcontrib>Penalva, Helena ; Gomes, Dora Prata ; Neves, M. Manuela ; Nunes, Sandra</creatorcontrib><description>* Extreme Value Theory has been asserting itself as one of the most important statistical theories for the applied sciences providing a solid theoretical basis for deriving statistical models describing extreme or even rare events. The efficiency of the inference and estimation procedures depends on the tail shape of the distribution underlying the data. In this work we will present a review of tests for assessing extreme value conditions and for the choice of the extreme value domain. Motivated by two real environmental problems we will apply those tests showing the need of performing such tests for choosing the most appropriate parameter estimation methods. Key-Words: * Environmental data; extreme values; heavy-tailed distributions; semi-parametric estimation; statistical testing. AMS Subject Classification: * 62G32, 62E20, 62G10.</description><identifier>ISSN: 1645-6726</identifier><language>eng</language><publisher>Instituto Nacional de Estatistica</publisher><subject>Environmental impact analysis ; Extreme value theory ; Mathematical research ; Methods</subject><ispartof>Revstat, 2019-04, Vol.17 (2), p.187</ispartof><rights>COPYRIGHT 2019 Instituto Nacional de Estatistica</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Penalva, Helena</creatorcontrib><creatorcontrib>Gomes, Dora Prata</creatorcontrib><creatorcontrib>Neves, M. Manuela</creatorcontrib><creatorcontrib>Nunes, Sandra</creatorcontrib><title>TESTING CONDITIONS AND ESTIMATING PARAMETERS IN EXTREME VALUE THEORY: APPLICATION TO ENVIRONMENTAL DATA</title><title>Revstat</title><description>* Extreme Value Theory has been asserting itself as one of the most important statistical theories for the applied sciences providing a solid theoretical basis for deriving statistical models describing extreme or even rare events. The efficiency of the inference and estimation procedures depends on the tail shape of the distribution underlying the data. In this work we will present a review of tests for assessing extreme value conditions and for the choice of the extreme value domain. Motivated by two real environmental problems we will apply those tests showing the need of performing such tests for choosing the most appropriate parameter estimation methods. Key-Words: * Environmental data; extreme values; heavy-tailed distributions; semi-parametric estimation; statistical testing. AMS Subject Classification: * 62G32, 62E20, 62G10.</description><subject>Environmental impact analysis</subject><subject>Extreme value theory</subject><subject>Mathematical research</subject><subject>Methods</subject><issn>1645-6726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNptjD1rwzAYhD200JDmPwg6u9iSJUfdhK0mAlsythLaKUiyZFzyAXX-P3XaDh363vDC3T13Fy1SkuGY5JA8RKtp-kjmQ2lGULqIBs07LeQGFEqWQgslO8BkCW5uzb6ThrWs5pq3HRAS8Dfd8pqDPat2HOgtV-37C2BNU4mC3XigFeByL1olay41q0DJNHuM7oM5Tn71-5fR7pXrYhtXajODVTxACK8xDcEi0hMTMDHEegdNMM5jaPuAjM-hTZChucsdRDRJe5T0IaQZxdYaR7M1WkZPP7uDOfrDeA6X66dxp3FyB4bXOMsoRXBuPf_TmtX70-guZx_G2f8DfAEvnFqF</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Penalva, Helena</creator><creator>Gomes, Dora Prata</creator><creator>Neves, M. Manuela</creator><creator>Nunes, Sandra</creator><general>Instituto Nacional de Estatistica</general><scope>INF</scope></search><sort><creationdate>20190401</creationdate><title>TESTING CONDITIONS AND ESTIMATING PARAMETERS IN EXTREME VALUE THEORY: APPLICATION TO ENVIRONMENTAL DATA</title><author>Penalva, Helena ; Gomes, Dora Prata ; Neves, M. Manuela ; Nunes, Sandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g222t-9ffb36d6af56a6bec2aface52bdf3ae72b03a97c7c23901d30dff1495bbac9483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Environmental impact analysis</topic><topic>Extreme value theory</topic><topic>Mathematical research</topic><topic>Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Penalva, Helena</creatorcontrib><creatorcontrib>Gomes, Dora Prata</creatorcontrib><creatorcontrib>Neves, M. Manuela</creatorcontrib><creatorcontrib>Nunes, Sandra</creatorcontrib><collection>Gale OneFile: Informe Academico</collection><jtitle>Revstat</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Penalva, Helena</au><au>Gomes, Dora Prata</au><au>Neves, M. Manuela</au><au>Nunes, Sandra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TESTING CONDITIONS AND ESTIMATING PARAMETERS IN EXTREME VALUE THEORY: APPLICATION TO ENVIRONMENTAL DATA</atitle><jtitle>Revstat</jtitle><date>2019-04-01</date><risdate>2019</risdate><volume>17</volume><issue>2</issue><spage>187</spage><pages>187-</pages><issn>1645-6726</issn><abstract>* Extreme Value Theory has been asserting itself as one of the most important statistical theories for the applied sciences providing a solid theoretical basis for deriving statistical models describing extreme or even rare events. The efficiency of the inference and estimation procedures depends on the tail shape of the distribution underlying the data. In this work we will present a review of tests for assessing extreme value conditions and for the choice of the extreme value domain. Motivated by two real environmental problems we will apply those tests showing the need of performing such tests for choosing the most appropriate parameter estimation methods. Key-Words: * Environmental data; extreme values; heavy-tailed distributions; semi-parametric estimation; statistical testing. AMS Subject Classification: * 62G32, 62E20, 62G10.</abstract><pub>Instituto Nacional de Estatistica</pub></addata></record>
fulltext fulltext
identifier ISSN: 1645-6726
ispartof Revstat, 2019-04, Vol.17 (2), p.187
issn 1645-6726
language eng
recordid cdi_gale_infotracmisc_A585449932
source DOAJ Directory of Open Access Journals
subjects Environmental impact analysis
Extreme value theory
Mathematical research
Methods
title TESTING CONDITIONS AND ESTIMATING PARAMETERS IN EXTREME VALUE THEORY: APPLICATION TO ENVIRONMENTAL DATA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T07%3A09%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TESTING%20CONDITIONS%20AND%20ESTIMATING%20PARAMETERS%20IN%20EXTREME%20VALUE%20THEORY:%20APPLICATION%20TO%20ENVIRONMENTAL%20DATA&rft.jtitle=Revstat&rft.au=Penalva,%20Helena&rft.date=2019-04-01&rft.volume=17&rft.issue=2&rft.spage=187&rft.pages=187-&rft.issn=1645-6726&rft_id=info:doi/&rft_dat=%3Cgale%3EA585449932%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A585449932&rfr_iscdi=true