Isogeometric Schwarz preconditioners for the biharmonic problem

A scalable overlapping Schwarz preconditioner for the biharmonic Dirichlet problem discretized by isogeometric analysis is constructed, and its convergence rate is analyzed. The proposed preconditioner is based on solving local biharmonic problems on overlapping subdomains that form a partition of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic transactions on numerical analysis 2018-01, Vol.49, p.81-102
Hauptverfasser: Cho, D, Pavarino, L.F, Scacchi, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 102
container_issue
container_start_page 81
container_title Electronic transactions on numerical analysis
container_volume 49
creator Cho, D
Pavarino, L.F
Scacchi, S
description A scalable overlapping Schwarz preconditioner for the biharmonic Dirichlet problem discretized by isogeometric analysis is constructed, and its convergence rate is analyzed. The proposed preconditioner is based on solving local biharmonic problems on overlapping subdomains that form a partition of the CAD domain of the problem and on solving an additional coarse biharmonic problem associated with the subdomain coarse mesh. An h-analysis of the preconditioner shows an optimal convergence rate bound that is scalable in the number of subdomains and is cubic in the ratio between subdomain and overlap sizes. Numerical results in 2D and 3D confirm this analysis and also illustrate the good convergence properties of the preconditioner with respect to the isogeometric polynomial degree p and regularity k. Key words. domain decomposition methods, overlapping Schwarz, biharmonic problem, scalable preconditioners, isogeometric analysis, finite elements, B-splines, NURBS AMS subject classifications. 65N55, 65N30, 65F10
doi_str_mv 10.1553/etna_vol49s81
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracmisc_A581622628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A581622628</galeid><sourcerecordid>A581622628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-6761c3def3e9b921866ec8089132e9efc3e73be1fd696a2abbf9067e7c19f63b3</originalsourceid><addsrcrecordid>eNptkM1LAzEQxYMoWKtH7wueVzPJbjY5SSl-FAoe1HNIspM2srspyaLoX--WeinIHGYYfm948wi5BnoLdc3vcByM_oxdpbKEEzIDqpqyoqI53c9ClkoAPycXOX9QCqpi9Yzcr3LcYOxxTMEVr277ZdJPsUvo4tCGMcQBUy58TMW4xcKGrUl9HCZ0l6LtsL8kZ950Ga_--py8Pz68LZ_L9cvTarlYl45XfCxFI8DxFj1HZRUDKQQ6SaUCzlChdxwbbhF8K5QwzFjr1WQcGwfKC275nNwc7m5MhzoMPo7JuD5kpxe1BMGYYHKibv-hpmqxD9NH6MO0PxKUB4FLMeeEXu9S6E361kD1PlR9FCr_Ba_-bKU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Isogeometric Schwarz preconditioners for the biharmonic problem</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Cho, D ; Pavarino, L.F ; Scacchi, S</creator><creatorcontrib>Cho, D ; Pavarino, L.F ; Scacchi, S</creatorcontrib><description>A scalable overlapping Schwarz preconditioner for the biharmonic Dirichlet problem discretized by isogeometric analysis is constructed, and its convergence rate is analyzed. The proposed preconditioner is based on solving local biharmonic problems on overlapping subdomains that form a partition of the CAD domain of the problem and on solving an additional coarse biharmonic problem associated with the subdomain coarse mesh. An h-analysis of the preconditioner shows an optimal convergence rate bound that is scalable in the number of subdomains and is cubic in the ratio between subdomain and overlap sizes. Numerical results in 2D and 3D confirm this analysis and also illustrate the good convergence properties of the preconditioner with respect to the isogeometric polynomial degree p and regularity k. Key words. domain decomposition methods, overlapping Schwarz, biharmonic problem, scalable preconditioners, isogeometric analysis, finite elements, B-splines, NURBS AMS subject classifications. 65N55, 65N30, 65F10</description><identifier>ISSN: 1068-9613</identifier><identifier>EISSN: 1097-4067</identifier><identifier>DOI: 10.1553/etna_vol49s81</identifier><language>eng</language><publisher>Institute of Computational Mathematics</publisher><subject>Boundary value problems ; Convergence (Mathematics) ; Dirichlet series ; Mathematical research</subject><ispartof>Electronic transactions on numerical analysis, 2018-01, Vol.49, p.81-102</ispartof><rights>COPYRIGHT 2018 Institute of Computational Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-6761c3def3e9b921866ec8089132e9efc3e73be1fd696a2abbf9067e7c19f63b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27933,27934</link.rule.ids></links><search><creatorcontrib>Cho, D</creatorcontrib><creatorcontrib>Pavarino, L.F</creatorcontrib><creatorcontrib>Scacchi, S</creatorcontrib><title>Isogeometric Schwarz preconditioners for the biharmonic problem</title><title>Electronic transactions on numerical analysis</title><description>A scalable overlapping Schwarz preconditioner for the biharmonic Dirichlet problem discretized by isogeometric analysis is constructed, and its convergence rate is analyzed. The proposed preconditioner is based on solving local biharmonic problems on overlapping subdomains that form a partition of the CAD domain of the problem and on solving an additional coarse biharmonic problem associated with the subdomain coarse mesh. An h-analysis of the preconditioner shows an optimal convergence rate bound that is scalable in the number of subdomains and is cubic in the ratio between subdomain and overlap sizes. Numerical results in 2D and 3D confirm this analysis and also illustrate the good convergence properties of the preconditioner with respect to the isogeometric polynomial degree p and regularity k. Key words. domain decomposition methods, overlapping Schwarz, biharmonic problem, scalable preconditioners, isogeometric analysis, finite elements, B-splines, NURBS AMS subject classifications. 65N55, 65N30, 65F10</description><subject>Boundary value problems</subject><subject>Convergence (Mathematics)</subject><subject>Dirichlet series</subject><subject>Mathematical research</subject><issn>1068-9613</issn><issn>1097-4067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNptkM1LAzEQxYMoWKtH7wueVzPJbjY5SSl-FAoe1HNIspM2srspyaLoX--WeinIHGYYfm948wi5BnoLdc3vcByM_oxdpbKEEzIDqpqyoqI53c9ClkoAPycXOX9QCqpi9Yzcr3LcYOxxTMEVr277ZdJPsUvo4tCGMcQBUy58TMW4xcKGrUl9HCZ0l6LtsL8kZ950Ga_--py8Pz68LZ_L9cvTarlYl45XfCxFI8DxFj1HZRUDKQQ6SaUCzlChdxwbbhF8K5QwzFjr1WQcGwfKC275nNwc7m5MhzoMPo7JuD5kpxe1BMGYYHKibv-hpmqxD9NH6MO0PxKUB4FLMeeEXu9S6E361kD1PlR9FCr_Ba_-bKU</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Cho, D</creator><creator>Pavarino, L.F</creator><creator>Scacchi, S</creator><general>Institute of Computational Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180101</creationdate><title>Isogeometric Schwarz preconditioners for the biharmonic problem</title><author>Cho, D ; Pavarino, L.F ; Scacchi, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-6761c3def3e9b921866ec8089132e9efc3e73be1fd696a2abbf9067e7c19f63b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Boundary value problems</topic><topic>Convergence (Mathematics)</topic><topic>Dirichlet series</topic><topic>Mathematical research</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cho, D</creatorcontrib><creatorcontrib>Pavarino, L.F</creatorcontrib><creatorcontrib>Scacchi, S</creatorcontrib><collection>CrossRef</collection><jtitle>Electronic transactions on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cho, D</au><au>Pavarino, L.F</au><au>Scacchi, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Isogeometric Schwarz preconditioners for the biharmonic problem</atitle><jtitle>Electronic transactions on numerical analysis</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>49</volume><spage>81</spage><epage>102</epage><pages>81-102</pages><issn>1068-9613</issn><eissn>1097-4067</eissn><abstract>A scalable overlapping Schwarz preconditioner for the biharmonic Dirichlet problem discretized by isogeometric analysis is constructed, and its convergence rate is analyzed. The proposed preconditioner is based on solving local biharmonic problems on overlapping subdomains that form a partition of the CAD domain of the problem and on solving an additional coarse biharmonic problem associated with the subdomain coarse mesh. An h-analysis of the preconditioner shows an optimal convergence rate bound that is scalable in the number of subdomains and is cubic in the ratio between subdomain and overlap sizes. Numerical results in 2D and 3D confirm this analysis and also illustrate the good convergence properties of the preconditioner with respect to the isogeometric polynomial degree p and regularity k. Key words. domain decomposition methods, overlapping Schwarz, biharmonic problem, scalable preconditioners, isogeometric analysis, finite elements, B-splines, NURBS AMS subject classifications. 65N55, 65N30, 65F10</abstract><pub>Institute of Computational Mathematics</pub><doi>10.1553/etna_vol49s81</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1068-9613
ispartof Electronic transactions on numerical analysis, 2018-01, Vol.49, p.81-102
issn 1068-9613
1097-4067
language eng
recordid cdi_gale_infotracmisc_A581622628
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Boundary value problems
Convergence (Mathematics)
Dirichlet series
Mathematical research
title Isogeometric Schwarz preconditioners for the biharmonic problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T02%3A37%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Isogeometric%20Schwarz%20preconditioners%20for%20the%20biharmonic%20problem&rft.jtitle=Electronic%20transactions%20on%20numerical%20analysis&rft.au=Cho,%20D&rft.date=2018-01-01&rft.volume=49&rft.spage=81&rft.epage=102&rft.pages=81-102&rft.issn=1068-9613&rft.eissn=1097-4067&rft_id=info:doi/10.1553/etna_vol49s81&rft_dat=%3Cgale_cross%3EA581622628%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A581622628&rfr_iscdi=true