Isogeometric Schwarz preconditioners for the biharmonic problem
A scalable overlapping Schwarz preconditioner for the biharmonic Dirichlet problem discretized by isogeometric analysis is constructed, and its convergence rate is analyzed. The proposed preconditioner is based on solving local biharmonic problems on overlapping subdomains that form a partition of t...
Gespeichert in:
Veröffentlicht in: | Electronic transactions on numerical analysis 2018-01, Vol.49, p.81-102 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 102 |
---|---|
container_issue | |
container_start_page | 81 |
container_title | Electronic transactions on numerical analysis |
container_volume | 49 |
creator | Cho, D Pavarino, L.F Scacchi, S |
description | A scalable overlapping Schwarz preconditioner for the biharmonic Dirichlet problem discretized by isogeometric analysis is constructed, and its convergence rate is analyzed. The proposed preconditioner is based on solving local biharmonic problems on overlapping subdomains that form a partition of the CAD domain of the problem and on solving an additional coarse biharmonic problem associated with the subdomain coarse mesh. An h-analysis of the preconditioner shows an optimal convergence rate bound that is scalable in the number of subdomains and is cubic in the ratio between subdomain and overlap sizes. Numerical results in 2D and 3D confirm this analysis and also illustrate the good convergence properties of the preconditioner with respect to the isogeometric polynomial degree p and regularity k. Key words. domain decomposition methods, overlapping Schwarz, biharmonic problem, scalable preconditioners, isogeometric analysis, finite elements, B-splines, NURBS AMS subject classifications. 65N55, 65N30, 65F10 |
doi_str_mv | 10.1553/etna_vol49s81 |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracmisc_A581622628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A581622628</galeid><sourcerecordid>A581622628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-6761c3def3e9b921866ec8089132e9efc3e73be1fd696a2abbf9067e7c19f63b3</originalsourceid><addsrcrecordid>eNptkM1LAzEQxYMoWKtH7wueVzPJbjY5SSl-FAoe1HNIspM2srspyaLoX--WeinIHGYYfm948wi5BnoLdc3vcByM_oxdpbKEEzIDqpqyoqI53c9ClkoAPycXOX9QCqpi9Yzcr3LcYOxxTMEVr277ZdJPsUvo4tCGMcQBUy58TMW4xcKGrUl9HCZ0l6LtsL8kZ950Ga_--py8Pz68LZ_L9cvTarlYl45XfCxFI8DxFj1HZRUDKQQ6SaUCzlChdxwbbhF8K5QwzFjr1WQcGwfKC275nNwc7m5MhzoMPo7JuD5kpxe1BMGYYHKibv-hpmqxD9NH6MO0PxKUB4FLMeeEXu9S6E361kD1PlR9FCr_Ba_-bKU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Isogeometric Schwarz preconditioners for the biharmonic problem</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Cho, D ; Pavarino, L.F ; Scacchi, S</creator><creatorcontrib>Cho, D ; Pavarino, L.F ; Scacchi, S</creatorcontrib><description>A scalable overlapping Schwarz preconditioner for the biharmonic Dirichlet problem discretized by isogeometric analysis is constructed, and its convergence rate is analyzed. The proposed preconditioner is based on solving local biharmonic problems on overlapping subdomains that form a partition of the CAD domain of the problem and on solving an additional coarse biharmonic problem associated with the subdomain coarse mesh. An h-analysis of the preconditioner shows an optimal convergence rate bound that is scalable in the number of subdomains and is cubic in the ratio between subdomain and overlap sizes. Numerical results in 2D and 3D confirm this analysis and also illustrate the good convergence properties of the preconditioner with respect to the isogeometric polynomial degree p and regularity k. Key words. domain decomposition methods, overlapping Schwarz, biharmonic problem, scalable preconditioners, isogeometric analysis, finite elements, B-splines, NURBS AMS subject classifications. 65N55, 65N30, 65F10</description><identifier>ISSN: 1068-9613</identifier><identifier>EISSN: 1097-4067</identifier><identifier>DOI: 10.1553/etna_vol49s81</identifier><language>eng</language><publisher>Institute of Computational Mathematics</publisher><subject>Boundary value problems ; Convergence (Mathematics) ; Dirichlet series ; Mathematical research</subject><ispartof>Electronic transactions on numerical analysis, 2018-01, Vol.49, p.81-102</ispartof><rights>COPYRIGHT 2018 Institute of Computational Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-6761c3def3e9b921866ec8089132e9efc3e73be1fd696a2abbf9067e7c19f63b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27933,27934</link.rule.ids></links><search><creatorcontrib>Cho, D</creatorcontrib><creatorcontrib>Pavarino, L.F</creatorcontrib><creatorcontrib>Scacchi, S</creatorcontrib><title>Isogeometric Schwarz preconditioners for the biharmonic problem</title><title>Electronic transactions on numerical analysis</title><description>A scalable overlapping Schwarz preconditioner for the biharmonic Dirichlet problem discretized by isogeometric analysis is constructed, and its convergence rate is analyzed. The proposed preconditioner is based on solving local biharmonic problems on overlapping subdomains that form a partition of the CAD domain of the problem and on solving an additional coarse biharmonic problem associated with the subdomain coarse mesh. An h-analysis of the preconditioner shows an optimal convergence rate bound that is scalable in the number of subdomains and is cubic in the ratio between subdomain and overlap sizes. Numerical results in 2D and 3D confirm this analysis and also illustrate the good convergence properties of the preconditioner with respect to the isogeometric polynomial degree p and regularity k. Key words. domain decomposition methods, overlapping Schwarz, biharmonic problem, scalable preconditioners, isogeometric analysis, finite elements, B-splines, NURBS AMS subject classifications. 65N55, 65N30, 65F10</description><subject>Boundary value problems</subject><subject>Convergence (Mathematics)</subject><subject>Dirichlet series</subject><subject>Mathematical research</subject><issn>1068-9613</issn><issn>1097-4067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNptkM1LAzEQxYMoWKtH7wueVzPJbjY5SSl-FAoe1HNIspM2srspyaLoX--WeinIHGYYfm948wi5BnoLdc3vcByM_oxdpbKEEzIDqpqyoqI53c9ClkoAPycXOX9QCqpi9Yzcr3LcYOxxTMEVr277ZdJPsUvo4tCGMcQBUy58TMW4xcKGrUl9HCZ0l6LtsL8kZ950Ga_--py8Pz68LZ_L9cvTarlYl45XfCxFI8DxFj1HZRUDKQQ6SaUCzlChdxwbbhF8K5QwzFjr1WQcGwfKC275nNwc7m5MhzoMPo7JuD5kpxe1BMGYYHKibv-hpmqxD9NH6MO0PxKUB4FLMeeEXu9S6E361kD1PlR9FCr_Ba_-bKU</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Cho, D</creator><creator>Pavarino, L.F</creator><creator>Scacchi, S</creator><general>Institute of Computational Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180101</creationdate><title>Isogeometric Schwarz preconditioners for the biharmonic problem</title><author>Cho, D ; Pavarino, L.F ; Scacchi, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-6761c3def3e9b921866ec8089132e9efc3e73be1fd696a2abbf9067e7c19f63b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Boundary value problems</topic><topic>Convergence (Mathematics)</topic><topic>Dirichlet series</topic><topic>Mathematical research</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cho, D</creatorcontrib><creatorcontrib>Pavarino, L.F</creatorcontrib><creatorcontrib>Scacchi, S</creatorcontrib><collection>CrossRef</collection><jtitle>Electronic transactions on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cho, D</au><au>Pavarino, L.F</au><au>Scacchi, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Isogeometric Schwarz preconditioners for the biharmonic problem</atitle><jtitle>Electronic transactions on numerical analysis</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>49</volume><spage>81</spage><epage>102</epage><pages>81-102</pages><issn>1068-9613</issn><eissn>1097-4067</eissn><abstract>A scalable overlapping Schwarz preconditioner for the biharmonic Dirichlet problem discretized by isogeometric analysis is constructed, and its convergence rate is analyzed. The proposed preconditioner is based on solving local biharmonic problems on overlapping subdomains that form a partition of the CAD domain of the problem and on solving an additional coarse biharmonic problem associated with the subdomain coarse mesh. An h-analysis of the preconditioner shows an optimal convergence rate bound that is scalable in the number of subdomains and is cubic in the ratio between subdomain and overlap sizes. Numerical results in 2D and 3D confirm this analysis and also illustrate the good convergence properties of the preconditioner with respect to the isogeometric polynomial degree p and regularity k. Key words. domain decomposition methods, overlapping Schwarz, biharmonic problem, scalable preconditioners, isogeometric analysis, finite elements, B-splines, NURBS AMS subject classifications. 65N55, 65N30, 65F10</abstract><pub>Institute of Computational Mathematics</pub><doi>10.1553/etna_vol49s81</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1068-9613 |
ispartof | Electronic transactions on numerical analysis, 2018-01, Vol.49, p.81-102 |
issn | 1068-9613 1097-4067 |
language | eng |
recordid | cdi_gale_infotracmisc_A581622628 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Boundary value problems Convergence (Mathematics) Dirichlet series Mathematical research |
title | Isogeometric Schwarz preconditioners for the biharmonic problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T02%3A37%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Isogeometric%20Schwarz%20preconditioners%20for%20the%20biharmonic%20problem&rft.jtitle=Electronic%20transactions%20on%20numerical%20analysis&rft.au=Cho,%20D&rft.date=2018-01-01&rft.volume=49&rft.spage=81&rft.epage=102&rft.pages=81-102&rft.issn=1068-9613&rft.eissn=1097-4067&rft_id=info:doi/10.1553/etna_vol49s81&rft_dat=%3Cgale_cross%3EA581622628%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A581622628&rfr_iscdi=true |