A New Approach to Real-Time Bidding in Online Advertisements: Auto Pricing Strategy
Real-time bidding (RTB) for digital advertising is becoming the norm for improving advertisers’ campaigns. Unlike traditional advertising practices, in the process of RTB, the advertisement slots of a mobile application or a website are mapped to a particular advertiser through a real-time auction....
Gespeichert in:
Veröffentlicht in: | INFORMS journal on computing 2019-01, Vol.31 (1), p.66-82 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 82 |
---|---|
container_issue | 1 |
container_start_page | 66 |
container_title | INFORMS journal on computing |
container_volume | 31 |
creator | Adikari, Shalinda Dutta, Kaushik |
description | Real-time bidding (RTB) for digital advertising is becoming the norm for improving advertisers’ campaigns. Unlike traditional advertising practices, in the process of RTB, the advertisement slots of a mobile application or a website are mapped to a particular advertiser through a real-time auction. The auction is triggered and is held for a few milliseconds after an application is launched. As one of the key components of the RTB ecosystem, the demand-side platform gives the advertisers a full pledge window to bid for available impressions. Because of the fast-growing market of mobile applications and websites, the selection of the most pertinent target audience for a particular advertiser is not a simple human-mediated process. The real-time programmatic approach has become popular instead. To address the complexity and dynamic nature of the RTB process, we propose an auto pricing strategy (APS) approach to determine the applications to bid for and their respective bid prices from the advertising agencies’ perspective. We apply the APS to actual RTB data and demonstrate how it outperforms the existing RTB approaches with a higher conversion rate for a lower target spend.
A video abstract is available at
https://doi.org/10.1287/ijoc.2018.0812
. |
doi_str_mv | 10.1287/ijoc.2018.0812 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_gale_infotracmisc_A577028766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A577028766</galeid><sourcerecordid>A577028766</sourcerecordid><originalsourceid>FETCH-LOGICAL-c510t-ab7a25fa1d119d9654d6370e99c1bd01088ef6b17c102a1fa201824734eec6e43</originalsourceid><addsrcrecordid>eNqFkltL7DAUhYscQY_66nNA8Ol0zE4vaX3rEW8gKl6eQybdrRnadExSL__eFAUdGJBAEsK3d9ZerCjaBzoDVvAjvRjUjFEoZrQAthFtQ8byOMtY8SfcaQlxWWT5VvTXuQWlNE3Scju6r8g1vpJqubSDVE_ED-QOZRc_6B7Jf13X2rREG3JjOm2QVPULWq8d9mi8OybVGApurVYTdu-t9Ni-70abjewc7n2dO9Hj2enDyUV8dXN-eVJdxSoD6mM555JljYQaoKzLPEvrPOEUy1LBvKZAiwKbfA5cAWUSGjnNxlKepIgqxzTZiQ4--wbtzyM6LxbDaE34UjAoOePAEv5NtbJDoU0zBJmq106JKuOcBuvyPFDxGqpFg1Z2g8FGh-cVfraGD6vGXqu1BYcrBYHx-OZbOTonVsF_P8D56ILvLmxOt0_effLrhCg7OGexEUure2nfBVAx5UJMuRCTd2LKxfekk2jbu9_4D8intdk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2197271237</pqid></control><display><type>article</type><title>A New Approach to Real-Time Bidding in Online Advertisements: Auto Pricing Strategy</title><source>Informs</source><source>EBSCOhost Business Source Complete</source><creator>Adikari, Shalinda ; Dutta, Kaushik</creator><creatorcontrib>Adikari, Shalinda ; Dutta, Kaushik</creatorcontrib><description>Real-time bidding (RTB) for digital advertising is becoming the norm for improving advertisers’ campaigns. Unlike traditional advertising practices, in the process of RTB, the advertisement slots of a mobile application or a website are mapped to a particular advertiser through a real-time auction. The auction is triggered and is held for a few milliseconds after an application is launched. As one of the key components of the RTB ecosystem, the demand-side platform gives the advertisers a full pledge window to bid for available impressions. Because of the fast-growing market of mobile applications and websites, the selection of the most pertinent target audience for a particular advertiser is not a simple human-mediated process. The real-time programmatic approach has become popular instead. To address the complexity and dynamic nature of the RTB process, we propose an auto pricing strategy (APS) approach to determine the applications to bid for and their respective bid prices from the advertising agencies’ perspective. We apply the APS to actual RTB data and demonstrate how it outperforms the existing RTB approaches with a higher conversion rate for a lower target spend.
A video abstract is available at
https://doi.org/10.1287/ijoc.2018.0812
.</description><identifier>ISSN: 1091-9856</identifier><identifier>EISSN: 1526-5528</identifier><identifier>EISSN: 1091-9856</identifier><identifier>DOI: 10.1287/ijoc.2018.0812</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>Advertisements ; Advertising ; Analysis ; Applications programs ; bid price ; bid request ; Bids ; demand-side platform ; Dynamic programming ; Internet/Web advertising ; Letting of contracts ; Methods ; Mobile applications ; Mobile computing ; Online advertising ; Pricing ; Real time ; real-time bidding ; target audience ; Websites ; winning rate</subject><ispartof>INFORMS journal on computing, 2019-01, Vol.31 (1), p.66-82</ispartof><rights>COPYRIGHT 2019 Institute for Operations Research and the Management Sciences</rights><rights>Copyright Institute for Operations Research and the Management Sciences Winter 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c510t-ab7a25fa1d119d9654d6370e99c1bd01088ef6b17c102a1fa201824734eec6e43</citedby><cites>FETCH-LOGICAL-c510t-ab7a25fa1d119d9654d6370e99c1bd01088ef6b17c102a1fa201824734eec6e43</cites><orcidid>0000-0001-8076-1472 ; 0000-0001-6255-0604</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/ijoc.2018.0812$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,780,784,3692,27924,27925,62616</link.rule.ids></links><search><creatorcontrib>Adikari, Shalinda</creatorcontrib><creatorcontrib>Dutta, Kaushik</creatorcontrib><title>A New Approach to Real-Time Bidding in Online Advertisements: Auto Pricing Strategy</title><title>INFORMS journal on computing</title><description>Real-time bidding (RTB) for digital advertising is becoming the norm for improving advertisers’ campaigns. Unlike traditional advertising practices, in the process of RTB, the advertisement slots of a mobile application or a website are mapped to a particular advertiser through a real-time auction. The auction is triggered and is held for a few milliseconds after an application is launched. As one of the key components of the RTB ecosystem, the demand-side platform gives the advertisers a full pledge window to bid for available impressions. Because of the fast-growing market of mobile applications and websites, the selection of the most pertinent target audience for a particular advertiser is not a simple human-mediated process. The real-time programmatic approach has become popular instead. To address the complexity and dynamic nature of the RTB process, we propose an auto pricing strategy (APS) approach to determine the applications to bid for and their respective bid prices from the advertising agencies’ perspective. We apply the APS to actual RTB data and demonstrate how it outperforms the existing RTB approaches with a higher conversion rate for a lower target spend.
A video abstract is available at
https://doi.org/10.1287/ijoc.2018.0812
.</description><subject>Advertisements</subject><subject>Advertising</subject><subject>Analysis</subject><subject>Applications programs</subject><subject>bid price</subject><subject>bid request</subject><subject>Bids</subject><subject>demand-side platform</subject><subject>Dynamic programming</subject><subject>Internet/Web advertising</subject><subject>Letting of contracts</subject><subject>Methods</subject><subject>Mobile applications</subject><subject>Mobile computing</subject><subject>Online advertising</subject><subject>Pricing</subject><subject>Real time</subject><subject>real-time bidding</subject><subject>target audience</subject><subject>Websites</subject><subject>winning rate</subject><issn>1091-9856</issn><issn>1526-5528</issn><issn>1091-9856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNqFkltL7DAUhYscQY_66nNA8Ol0zE4vaX3rEW8gKl6eQybdrRnadExSL__eFAUdGJBAEsK3d9ZerCjaBzoDVvAjvRjUjFEoZrQAthFtQ8byOMtY8SfcaQlxWWT5VvTXuQWlNE3Scju6r8g1vpJqubSDVE_ED-QOZRc_6B7Jf13X2rREG3JjOm2QVPULWq8d9mi8OybVGApurVYTdu-t9Ni-70abjewc7n2dO9Hj2enDyUV8dXN-eVJdxSoD6mM555JljYQaoKzLPEvrPOEUy1LBvKZAiwKbfA5cAWUSGjnNxlKepIgqxzTZiQ4--wbtzyM6LxbDaE34UjAoOePAEv5NtbJDoU0zBJmq106JKuOcBuvyPFDxGqpFg1Z2g8FGh-cVfraGD6vGXqu1BYcrBYHx-OZbOTonVsF_P8D56ILvLmxOt0_effLrhCg7OGexEUure2nfBVAx5UJMuRCTd2LKxfekk2jbu9_4D8intdk</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Adikari, Shalinda</creator><creator>Dutta, Kaushik</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0001-8076-1472</orcidid><orcidid>https://orcid.org/0000-0001-6255-0604</orcidid></search><sort><creationdate>20190101</creationdate><title>A New Approach to Real-Time Bidding in Online Advertisements: Auto Pricing Strategy</title><author>Adikari, Shalinda ; Dutta, Kaushik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c510t-ab7a25fa1d119d9654d6370e99c1bd01088ef6b17c102a1fa201824734eec6e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Advertisements</topic><topic>Advertising</topic><topic>Analysis</topic><topic>Applications programs</topic><topic>bid price</topic><topic>bid request</topic><topic>Bids</topic><topic>demand-side platform</topic><topic>Dynamic programming</topic><topic>Internet/Web advertising</topic><topic>Letting of contracts</topic><topic>Methods</topic><topic>Mobile applications</topic><topic>Mobile computing</topic><topic>Online advertising</topic><topic>Pricing</topic><topic>Real time</topic><topic>real-time bidding</topic><topic>target audience</topic><topic>Websites</topic><topic>winning rate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adikari, Shalinda</creatorcontrib><creatorcontrib>Dutta, Kaushik</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>ProQuest Computer Science Collection</collection><jtitle>INFORMS journal on computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adikari, Shalinda</au><au>Dutta, Kaushik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Approach to Real-Time Bidding in Online Advertisements: Auto Pricing Strategy</atitle><jtitle>INFORMS journal on computing</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>31</volume><issue>1</issue><spage>66</spage><epage>82</epage><pages>66-82</pages><issn>1091-9856</issn><eissn>1526-5528</eissn><eissn>1091-9856</eissn><abstract>Real-time bidding (RTB) for digital advertising is becoming the norm for improving advertisers’ campaigns. Unlike traditional advertising practices, in the process of RTB, the advertisement slots of a mobile application or a website are mapped to a particular advertiser through a real-time auction. The auction is triggered and is held for a few milliseconds after an application is launched. As one of the key components of the RTB ecosystem, the demand-side platform gives the advertisers a full pledge window to bid for available impressions. Because of the fast-growing market of mobile applications and websites, the selection of the most pertinent target audience for a particular advertiser is not a simple human-mediated process. The real-time programmatic approach has become popular instead. To address the complexity and dynamic nature of the RTB process, we propose an auto pricing strategy (APS) approach to determine the applications to bid for and their respective bid prices from the advertising agencies’ perspective. We apply the APS to actual RTB data and demonstrate how it outperforms the existing RTB approaches with a higher conversion rate for a lower target spend.
A video abstract is available at
https://doi.org/10.1287/ijoc.2018.0812
.</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/ijoc.2018.0812</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-8076-1472</orcidid><orcidid>https://orcid.org/0000-0001-6255-0604</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1091-9856 |
ispartof | INFORMS journal on computing, 2019-01, Vol.31 (1), p.66-82 |
issn | 1091-9856 1526-5528 1091-9856 |
language | eng |
recordid | cdi_gale_infotracmisc_A577028766 |
source | Informs; EBSCOhost Business Source Complete |
subjects | Advertisements Advertising Analysis Applications programs bid price bid request Bids demand-side platform Dynamic programming Internet/Web advertising Letting of contracts Methods Mobile applications Mobile computing Online advertising Pricing Real time real-time bidding target audience Websites winning rate |
title | A New Approach to Real-Time Bidding in Online Advertisements: Auto Pricing Strategy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T02%3A11%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Approach%20to%20Real-Time%20Bidding%20in%20Online%20Advertisements:%20Auto%20Pricing%20Strategy&rft.jtitle=INFORMS%20journal%20on%20computing&rft.au=Adikari,%20Shalinda&rft.date=2019-01-01&rft.volume=31&rft.issue=1&rft.spage=66&rft.epage=82&rft.pages=66-82&rft.issn=1091-9856&rft.eissn=1526-5528&rft_id=info:doi/10.1287/ijoc.2018.0812&rft_dat=%3Cgale_proqu%3EA577028766%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2197271237&rft_id=info:pmid/&rft_galeid=A577028766&rfr_iscdi=true |