A New Approach to Real-Time Bidding in Online Advertisements: Auto Pricing Strategy

Real-time bidding (RTB) for digital advertising is becoming the norm for improving advertisers’ campaigns. Unlike traditional advertising practices, in the process of RTB, the advertisement slots of a mobile application or a website are mapped to a particular advertiser through a real-time auction....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:INFORMS journal on computing 2019-01, Vol.31 (1), p.66-82
Hauptverfasser: Adikari, Shalinda, Dutta, Kaushik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 82
container_issue 1
container_start_page 66
container_title INFORMS journal on computing
container_volume 31
creator Adikari, Shalinda
Dutta, Kaushik
description Real-time bidding (RTB) for digital advertising is becoming the norm for improving advertisers’ campaigns. Unlike traditional advertising practices, in the process of RTB, the advertisement slots of a mobile application or a website are mapped to a particular advertiser through a real-time auction. The auction is triggered and is held for a few milliseconds after an application is launched. As one of the key components of the RTB ecosystem, the demand-side platform gives the advertisers a full pledge window to bid for available impressions. Because of the fast-growing market of mobile applications and websites, the selection of the most pertinent target audience for a particular advertiser is not a simple human-mediated process. The real-time programmatic approach has become popular instead. To address the complexity and dynamic nature of the RTB process, we propose an auto pricing strategy (APS) approach to determine the applications to bid for and their respective bid prices from the advertising agencies’ perspective. We apply the APS to actual RTB data and demonstrate how it outperforms the existing RTB approaches with a higher conversion rate for a lower target spend. A video abstract is available at https://doi.org/10.1287/ijoc.2018.0812 .
doi_str_mv 10.1287/ijoc.2018.0812
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_gale_infotracmisc_A577028766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A577028766</galeid><sourcerecordid>A577028766</sourcerecordid><originalsourceid>FETCH-LOGICAL-c510t-ab7a25fa1d119d9654d6370e99c1bd01088ef6b17c102a1fa201824734eec6e43</originalsourceid><addsrcrecordid>eNqFkltL7DAUhYscQY_66nNA8Ol0zE4vaX3rEW8gKl6eQybdrRnadExSL__eFAUdGJBAEsK3d9ZerCjaBzoDVvAjvRjUjFEoZrQAthFtQ8byOMtY8SfcaQlxWWT5VvTXuQWlNE3Scju6r8g1vpJqubSDVE_ED-QOZRc_6B7Jf13X2rREG3JjOm2QVPULWq8d9mi8OybVGApurVYTdu-t9Ni-70abjewc7n2dO9Hj2enDyUV8dXN-eVJdxSoD6mM555JljYQaoKzLPEvrPOEUy1LBvKZAiwKbfA5cAWUSGjnNxlKepIgqxzTZiQ4--wbtzyM6LxbDaE34UjAoOePAEv5NtbJDoU0zBJmq106JKuOcBuvyPFDxGqpFg1Z2g8FGh-cVfraGD6vGXqu1BYcrBYHx-OZbOTonVsF_P8D56ILvLmxOt0_effLrhCg7OGexEUure2nfBVAx5UJMuRCTd2LKxfekk2jbu9_4D8intdk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2197271237</pqid></control><display><type>article</type><title>A New Approach to Real-Time Bidding in Online Advertisements: Auto Pricing Strategy</title><source>Informs</source><source>EBSCOhost Business Source Complete</source><creator>Adikari, Shalinda ; Dutta, Kaushik</creator><creatorcontrib>Adikari, Shalinda ; Dutta, Kaushik</creatorcontrib><description>Real-time bidding (RTB) for digital advertising is becoming the norm for improving advertisers’ campaigns. Unlike traditional advertising practices, in the process of RTB, the advertisement slots of a mobile application or a website are mapped to a particular advertiser through a real-time auction. The auction is triggered and is held for a few milliseconds after an application is launched. As one of the key components of the RTB ecosystem, the demand-side platform gives the advertisers a full pledge window to bid for available impressions. Because of the fast-growing market of mobile applications and websites, the selection of the most pertinent target audience for a particular advertiser is not a simple human-mediated process. The real-time programmatic approach has become popular instead. To address the complexity and dynamic nature of the RTB process, we propose an auto pricing strategy (APS) approach to determine the applications to bid for and their respective bid prices from the advertising agencies’ perspective. We apply the APS to actual RTB data and demonstrate how it outperforms the existing RTB approaches with a higher conversion rate for a lower target spend. A video abstract is available at https://doi.org/10.1287/ijoc.2018.0812 .</description><identifier>ISSN: 1091-9856</identifier><identifier>EISSN: 1526-5528</identifier><identifier>EISSN: 1091-9856</identifier><identifier>DOI: 10.1287/ijoc.2018.0812</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>Advertisements ; Advertising ; Analysis ; Applications programs ; bid price ; bid request ; Bids ; demand-side platform ; Dynamic programming ; Internet/Web advertising ; Letting of contracts ; Methods ; Mobile applications ; Mobile computing ; Online advertising ; Pricing ; Real time ; real-time bidding ; target audience ; Websites ; winning rate</subject><ispartof>INFORMS journal on computing, 2019-01, Vol.31 (1), p.66-82</ispartof><rights>COPYRIGHT 2019 Institute for Operations Research and the Management Sciences</rights><rights>Copyright Institute for Operations Research and the Management Sciences Winter 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c510t-ab7a25fa1d119d9654d6370e99c1bd01088ef6b17c102a1fa201824734eec6e43</citedby><cites>FETCH-LOGICAL-c510t-ab7a25fa1d119d9654d6370e99c1bd01088ef6b17c102a1fa201824734eec6e43</cites><orcidid>0000-0001-8076-1472 ; 0000-0001-6255-0604</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/ijoc.2018.0812$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,780,784,3692,27924,27925,62616</link.rule.ids></links><search><creatorcontrib>Adikari, Shalinda</creatorcontrib><creatorcontrib>Dutta, Kaushik</creatorcontrib><title>A New Approach to Real-Time Bidding in Online Advertisements: Auto Pricing Strategy</title><title>INFORMS journal on computing</title><description>Real-time bidding (RTB) for digital advertising is becoming the norm for improving advertisers’ campaigns. Unlike traditional advertising practices, in the process of RTB, the advertisement slots of a mobile application or a website are mapped to a particular advertiser through a real-time auction. The auction is triggered and is held for a few milliseconds after an application is launched. As one of the key components of the RTB ecosystem, the demand-side platform gives the advertisers a full pledge window to bid for available impressions. Because of the fast-growing market of mobile applications and websites, the selection of the most pertinent target audience for a particular advertiser is not a simple human-mediated process. The real-time programmatic approach has become popular instead. To address the complexity and dynamic nature of the RTB process, we propose an auto pricing strategy (APS) approach to determine the applications to bid for and their respective bid prices from the advertising agencies’ perspective. We apply the APS to actual RTB data and demonstrate how it outperforms the existing RTB approaches with a higher conversion rate for a lower target spend. A video abstract is available at https://doi.org/10.1287/ijoc.2018.0812 .</description><subject>Advertisements</subject><subject>Advertising</subject><subject>Analysis</subject><subject>Applications programs</subject><subject>bid price</subject><subject>bid request</subject><subject>Bids</subject><subject>demand-side platform</subject><subject>Dynamic programming</subject><subject>Internet/Web advertising</subject><subject>Letting of contracts</subject><subject>Methods</subject><subject>Mobile applications</subject><subject>Mobile computing</subject><subject>Online advertising</subject><subject>Pricing</subject><subject>Real time</subject><subject>real-time bidding</subject><subject>target audience</subject><subject>Websites</subject><subject>winning rate</subject><issn>1091-9856</issn><issn>1526-5528</issn><issn>1091-9856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNqFkltL7DAUhYscQY_66nNA8Ol0zE4vaX3rEW8gKl6eQybdrRnadExSL__eFAUdGJBAEsK3d9ZerCjaBzoDVvAjvRjUjFEoZrQAthFtQ8byOMtY8SfcaQlxWWT5VvTXuQWlNE3Scju6r8g1vpJqubSDVE_ED-QOZRc_6B7Jf13X2rREG3JjOm2QVPULWq8d9mi8OybVGApurVYTdu-t9Ni-70abjewc7n2dO9Hj2enDyUV8dXN-eVJdxSoD6mM555JljYQaoKzLPEvrPOEUy1LBvKZAiwKbfA5cAWUSGjnNxlKepIgqxzTZiQ4--wbtzyM6LxbDaE34UjAoOePAEv5NtbJDoU0zBJmq106JKuOcBuvyPFDxGqpFg1Z2g8FGh-cVfraGD6vGXqu1BYcrBYHx-OZbOTonVsF_P8D56ILvLmxOt0_effLrhCg7OGexEUure2nfBVAx5UJMuRCTd2LKxfekk2jbu9_4D8intdk</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Adikari, Shalinda</creator><creator>Dutta, Kaushik</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0001-8076-1472</orcidid><orcidid>https://orcid.org/0000-0001-6255-0604</orcidid></search><sort><creationdate>20190101</creationdate><title>A New Approach to Real-Time Bidding in Online Advertisements: Auto Pricing Strategy</title><author>Adikari, Shalinda ; Dutta, Kaushik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c510t-ab7a25fa1d119d9654d6370e99c1bd01088ef6b17c102a1fa201824734eec6e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Advertisements</topic><topic>Advertising</topic><topic>Analysis</topic><topic>Applications programs</topic><topic>bid price</topic><topic>bid request</topic><topic>Bids</topic><topic>demand-side platform</topic><topic>Dynamic programming</topic><topic>Internet/Web advertising</topic><topic>Letting of contracts</topic><topic>Methods</topic><topic>Mobile applications</topic><topic>Mobile computing</topic><topic>Online advertising</topic><topic>Pricing</topic><topic>Real time</topic><topic>real-time bidding</topic><topic>target audience</topic><topic>Websites</topic><topic>winning rate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adikari, Shalinda</creatorcontrib><creatorcontrib>Dutta, Kaushik</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>ProQuest Computer Science Collection</collection><jtitle>INFORMS journal on computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adikari, Shalinda</au><au>Dutta, Kaushik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Approach to Real-Time Bidding in Online Advertisements: Auto Pricing Strategy</atitle><jtitle>INFORMS journal on computing</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>31</volume><issue>1</issue><spage>66</spage><epage>82</epage><pages>66-82</pages><issn>1091-9856</issn><eissn>1526-5528</eissn><eissn>1091-9856</eissn><abstract>Real-time bidding (RTB) for digital advertising is becoming the norm for improving advertisers’ campaigns. Unlike traditional advertising practices, in the process of RTB, the advertisement slots of a mobile application or a website are mapped to a particular advertiser through a real-time auction. The auction is triggered and is held for a few milliseconds after an application is launched. As one of the key components of the RTB ecosystem, the demand-side platform gives the advertisers a full pledge window to bid for available impressions. Because of the fast-growing market of mobile applications and websites, the selection of the most pertinent target audience for a particular advertiser is not a simple human-mediated process. The real-time programmatic approach has become popular instead. To address the complexity and dynamic nature of the RTB process, we propose an auto pricing strategy (APS) approach to determine the applications to bid for and their respective bid prices from the advertising agencies’ perspective. We apply the APS to actual RTB data and demonstrate how it outperforms the existing RTB approaches with a higher conversion rate for a lower target spend. A video abstract is available at https://doi.org/10.1287/ijoc.2018.0812 .</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/ijoc.2018.0812</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-8076-1472</orcidid><orcidid>https://orcid.org/0000-0001-6255-0604</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1091-9856
ispartof INFORMS journal on computing, 2019-01, Vol.31 (1), p.66-82
issn 1091-9856
1526-5528
1091-9856
language eng
recordid cdi_gale_infotracmisc_A577028766
source Informs; EBSCOhost Business Source Complete
subjects Advertisements
Advertising
Analysis
Applications programs
bid price
bid request
Bids
demand-side platform
Dynamic programming
Internet/Web advertising
Letting of contracts
Methods
Mobile applications
Mobile computing
Online advertising
Pricing
Real time
real-time bidding
target audience
Websites
winning rate
title A New Approach to Real-Time Bidding in Online Advertisements: Auto Pricing Strategy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T02%3A11%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Approach%20to%20Real-Time%20Bidding%20in%20Online%20Advertisements:%20Auto%20Pricing%20Strategy&rft.jtitle=INFORMS%20journal%20on%20computing&rft.au=Adikari,%20Shalinda&rft.date=2019-01-01&rft.volume=31&rft.issue=1&rft.spage=66&rft.epage=82&rft.pages=66-82&rft.issn=1091-9856&rft.eissn=1526-5528&rft_id=info:doi/10.1287/ijoc.2018.0812&rft_dat=%3Cgale_proqu%3EA577028766%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2197271237&rft_id=info:pmid/&rft_galeid=A577028766&rfr_iscdi=true