Improving algorithms and uncertainty estimates for satellite NO.sub.2 retrievals: results from the quality assurance for the essential climate variables project

Global observations of tropospheric nitrogen dioxide (NO.sub.2) columns have been shown to be feasible from space, but consistent multi-sensor records do not yet exist, nor are they covered by planned activities at the international level. Harmonised, multi-decadal records of NO.sub.2 columns and th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmospheric measurement techniques 2018-12, Vol.11 (12), p.6651
Hauptverfasser: Boersma, K. Folkert, Eskes, Henk J, Richter, Andreas, De Smedt, Isabelle, Lorente, Alba, Beirle, Steffen, van Geffen, Jos H. G. M, Zara, Marina, Peters, Enno, Van Roozendael, Michel, Wagner, Thomas, Maasakkers, Joannes D, van der A, Ronald J, Nightingale, Joanne, De Rudder, Anne, Irie, Hitoshi, Pinardi, Gaia, Lambert, Jean-Christopher, Compernolle, Steven C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 6651
container_title Atmospheric measurement techniques
container_volume 11
creator Boersma, K. Folkert
Eskes, Henk J
Richter, Andreas
De Smedt, Isabelle
Lorente, Alba
Beirle, Steffen
van Geffen, Jos H. G. M
Zara, Marina
Peters, Enno
Van Roozendael, Michel
Wagner, Thomas
Maasakkers, Joannes D
van der A, Ronald J
Nightingale, Joanne
De Rudder, Anne
Irie, Hitoshi
Pinardi, Gaia
Lambert, Jean-Christopher
Compernolle, Steven C
description Global observations of tropospheric nitrogen dioxide (NO.sub.2) columns have been shown to be feasible from space, but consistent multi-sensor records do not yet exist, nor are they covered by planned activities at the international level. Harmonised, multi-decadal records of NO.sub.2 columns and their associated uncertainties can provide crucial information on how the emissions and concentrations of nitrogen oxides evolve over time. Here we describe the development of a new, community best-practice NO.sub.2 retrieval algorithm based on a synthesis of existing approaches. Detailed comparisons of these approaches led us to implement an enhanced spectral fitting method for NO.sub.2, a 1°  ×  1° TM5-MP data assimilation scheme to estimate the stratospheric background and improve air mass factor calculations. Guided by the needs expressed by data users, producers, and WMO GCOS guidelines, we incorporated detailed per-pixel uncertainty information in the data product, along with easily traceable information on the relevant quality aspects of the retrieval. We applied the improved QA4ECV NO.sub.2 algorithm to the most current level-1 data sets to produce a complete 22-year data record that includes GOME (1995--2003), SCIAMACHY (2002--2012), GOME-2(A) (2007 onwards) and OMI (2004 onwards). The QA4ECV NO.sub.2 spectral fitting recommendations and TM5-MP stratospheric column and air mass factor approach are currently also applied to S5P-TROPOMI. The uncertainties in the QA4ECV tropospheric NO.sub.2 columns amount to typically 40 % over polluted scenes. The first validation results of the QA4ECV OMI NO.sub.2 columns and their uncertainties over Tai'an, China, in June 2006 suggest a small bias (−2 %) and better precision than suggested by uncertainty propagation. We conclude that our improved QA4ECV NO.sub.2 long-term data record is providing valuable information to quantitatively constrain emissions, deposition, and trends in nitrogen oxides on a global scale.
format Article
fullrecord <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracmisc_A566058185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A566058185</galeid><sourcerecordid>A566058185</sourcerecordid><originalsourceid>FETCH-LOGICAL-g1015-6ba0c41b5efcd22d780798891a8356536a65994fb234689fc70bd4ed597f9c7a3</originalsourceid><addsrcrecordid>eNptjstOwzAQRSMEEqXwD5ZYsUgVJ7HjsKsqHpUqKvFYVxNnnLpyErCdiv4Nn4opXVAJzWKuZs7cOyfRiApexILl4vSgaSboeXTh3CZJeE6LdBR9zdt322911xAwTW-1X7eOQFeToZNoPejO7wg6r1vw6IjqLXFBGaM9kqflxA3VJCUWvdW4BeNug3aD8QG1fUv8GsnHAIHeEXBusBBs9y4_G3QOO6_BEGn2AWQLVkNlQlJ4a4PSX0ZnKtji1aGPo7f7u9fZY7xYPsxn00Xc0ISymFeQyJxWDJWs07QuRFKUQpQURMY4yzhwVpa5qtIs56JUskiqOsealYUqZQHZOLr-9W3A4Ep3qvcWZKudXE0Z5wkTVLBATf6hQtXYatl3qHSYHx3cHB0ExuOnb2BwbjV_ef7LfgNyJogn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Improving algorithms and uncertainty estimates for satellite NO.sub.2 retrievals: results from the quality assurance for the essential climate variables project</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Boersma, K. Folkert ; Eskes, Henk J ; Richter, Andreas ; De Smedt, Isabelle ; Lorente, Alba ; Beirle, Steffen ; van Geffen, Jos H. G. M ; Zara, Marina ; Peters, Enno ; Van Roozendael, Michel ; Wagner, Thomas ; Maasakkers, Joannes D ; van der A, Ronald J ; Nightingale, Joanne ; De Rudder, Anne ; Irie, Hitoshi ; Pinardi, Gaia ; Lambert, Jean-Christopher ; Compernolle, Steven C</creator><creatorcontrib>Boersma, K. Folkert ; Eskes, Henk J ; Richter, Andreas ; De Smedt, Isabelle ; Lorente, Alba ; Beirle, Steffen ; van Geffen, Jos H. G. M ; Zara, Marina ; Peters, Enno ; Van Roozendael, Michel ; Wagner, Thomas ; Maasakkers, Joannes D ; van der A, Ronald J ; Nightingale, Joanne ; De Rudder, Anne ; Irie, Hitoshi ; Pinardi, Gaia ; Lambert, Jean-Christopher ; Compernolle, Steven C</creatorcontrib><description>Global observations of tropospheric nitrogen dioxide (NO.sub.2) columns have been shown to be feasible from space, but consistent multi-sensor records do not yet exist, nor are they covered by planned activities at the international level. Harmonised, multi-decadal records of NO.sub.2 columns and their associated uncertainties can provide crucial information on how the emissions and concentrations of nitrogen oxides evolve over time. Here we describe the development of a new, community best-practice NO.sub.2 retrieval algorithm based on a synthesis of existing approaches. Detailed comparisons of these approaches led us to implement an enhanced spectral fitting method for NO.sub.2, a 1°  ×  1° TM5-MP data assimilation scheme to estimate the stratospheric background and improve air mass factor calculations. Guided by the needs expressed by data users, producers, and WMO GCOS guidelines, we incorporated detailed per-pixel uncertainty information in the data product, along with easily traceable information on the relevant quality aspects of the retrieval. We applied the improved QA4ECV NO.sub.2 algorithm to the most current level-1 data sets to produce a complete 22-year data record that includes GOME (1995--2003), SCIAMACHY (2002--2012), GOME-2(A) (2007 onwards) and OMI (2004 onwards). The QA4ECV NO.sub.2 spectral fitting recommendations and TM5-MP stratospheric column and air mass factor approach are currently also applied to S5P-TROPOMI. The uncertainties in the QA4ECV tropospheric NO.sub.2 columns amount to typically 40 % over polluted scenes. The first validation results of the QA4ECV OMI NO.sub.2 columns and their uncertainties over Tai'an, China, in June 2006 suggest a small bias (−2 %) and better precision than suggested by uncertainty propagation. We conclude that our improved QA4ECV NO.sub.2 long-term data record is providing valuable information to quantitatively constrain emissions, deposition, and trends in nitrogen oxides on a global scale.</description><identifier>ISSN: 1867-1381</identifier><identifier>EISSN: 1867-8548</identifier><language>eng</language><publisher>Copernicus GmbH</publisher><subject>Environmental aspects ; Measurement ; Meteorological research ; Nitrogen dioxide ; Observations</subject><ispartof>Atmospheric measurement techniques, 2018-12, Vol.11 (12), p.6651</ispartof><rights>COPYRIGHT 2018 Copernicus GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781</link.rule.ids></links><search><creatorcontrib>Boersma, K. Folkert</creatorcontrib><creatorcontrib>Eskes, Henk J</creatorcontrib><creatorcontrib>Richter, Andreas</creatorcontrib><creatorcontrib>De Smedt, Isabelle</creatorcontrib><creatorcontrib>Lorente, Alba</creatorcontrib><creatorcontrib>Beirle, Steffen</creatorcontrib><creatorcontrib>van Geffen, Jos H. G. M</creatorcontrib><creatorcontrib>Zara, Marina</creatorcontrib><creatorcontrib>Peters, Enno</creatorcontrib><creatorcontrib>Van Roozendael, Michel</creatorcontrib><creatorcontrib>Wagner, Thomas</creatorcontrib><creatorcontrib>Maasakkers, Joannes D</creatorcontrib><creatorcontrib>van der A, Ronald J</creatorcontrib><creatorcontrib>Nightingale, Joanne</creatorcontrib><creatorcontrib>De Rudder, Anne</creatorcontrib><creatorcontrib>Irie, Hitoshi</creatorcontrib><creatorcontrib>Pinardi, Gaia</creatorcontrib><creatorcontrib>Lambert, Jean-Christopher</creatorcontrib><creatorcontrib>Compernolle, Steven C</creatorcontrib><title>Improving algorithms and uncertainty estimates for satellite NO.sub.2 retrievals: results from the quality assurance for the essential climate variables project</title><title>Atmospheric measurement techniques</title><description>Global observations of tropospheric nitrogen dioxide (NO.sub.2) columns have been shown to be feasible from space, but consistent multi-sensor records do not yet exist, nor are they covered by planned activities at the international level. Harmonised, multi-decadal records of NO.sub.2 columns and their associated uncertainties can provide crucial information on how the emissions and concentrations of nitrogen oxides evolve over time. Here we describe the development of a new, community best-practice NO.sub.2 retrieval algorithm based on a synthesis of existing approaches. Detailed comparisons of these approaches led us to implement an enhanced spectral fitting method for NO.sub.2, a 1°  ×  1° TM5-MP data assimilation scheme to estimate the stratospheric background and improve air mass factor calculations. Guided by the needs expressed by data users, producers, and WMO GCOS guidelines, we incorporated detailed per-pixel uncertainty information in the data product, along with easily traceable information on the relevant quality aspects of the retrieval. We applied the improved QA4ECV NO.sub.2 algorithm to the most current level-1 data sets to produce a complete 22-year data record that includes GOME (1995--2003), SCIAMACHY (2002--2012), GOME-2(A) (2007 onwards) and OMI (2004 onwards). The QA4ECV NO.sub.2 spectral fitting recommendations and TM5-MP stratospheric column and air mass factor approach are currently also applied to S5P-TROPOMI. The uncertainties in the QA4ECV tropospheric NO.sub.2 columns amount to typically 40 % over polluted scenes. The first validation results of the QA4ECV OMI NO.sub.2 columns and their uncertainties over Tai'an, China, in June 2006 suggest a small bias (−2 %) and better precision than suggested by uncertainty propagation. We conclude that our improved QA4ECV NO.sub.2 long-term data record is providing valuable information to quantitatively constrain emissions, deposition, and trends in nitrogen oxides on a global scale.</description><subject>Environmental aspects</subject><subject>Measurement</subject><subject>Meteorological research</subject><subject>Nitrogen dioxide</subject><subject>Observations</subject><issn>1867-1381</issn><issn>1867-8548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNptjstOwzAQRSMEEqXwD5ZYsUgVJ7HjsKsqHpUqKvFYVxNnnLpyErCdiv4Nn4opXVAJzWKuZs7cOyfRiApexILl4vSgaSboeXTh3CZJeE6LdBR9zdt322911xAwTW-1X7eOQFeToZNoPejO7wg6r1vw6IjqLXFBGaM9kqflxA3VJCUWvdW4BeNug3aD8QG1fUv8GsnHAIHeEXBusBBs9y4_G3QOO6_BEGn2AWQLVkNlQlJ4a4PSX0ZnKtji1aGPo7f7u9fZY7xYPsxn00Xc0ISymFeQyJxWDJWs07QuRFKUQpQURMY4yzhwVpa5qtIs56JUskiqOsealYUqZQHZOLr-9W3A4Ep3qvcWZKudXE0Z5wkTVLBATf6hQtXYatl3qHSYHx3cHB0ExuOnb2BwbjV_ef7LfgNyJogn</recordid><startdate>20181217</startdate><enddate>20181217</enddate><creator>Boersma, K. Folkert</creator><creator>Eskes, Henk J</creator><creator>Richter, Andreas</creator><creator>De Smedt, Isabelle</creator><creator>Lorente, Alba</creator><creator>Beirle, Steffen</creator><creator>van Geffen, Jos H. G. M</creator><creator>Zara, Marina</creator><creator>Peters, Enno</creator><creator>Van Roozendael, Michel</creator><creator>Wagner, Thomas</creator><creator>Maasakkers, Joannes D</creator><creator>van der A, Ronald J</creator><creator>Nightingale, Joanne</creator><creator>De Rudder, Anne</creator><creator>Irie, Hitoshi</creator><creator>Pinardi, Gaia</creator><creator>Lambert, Jean-Christopher</creator><creator>Compernolle, Steven C</creator><general>Copernicus GmbH</general><scope>ISR</scope></search><sort><creationdate>20181217</creationdate><title>Improving algorithms and uncertainty estimates for satellite NO.sub.2 retrievals: results from the quality assurance for the essential climate variables project</title><author>Boersma, K. Folkert ; Eskes, Henk J ; Richter, Andreas ; De Smedt, Isabelle ; Lorente, Alba ; Beirle, Steffen ; van Geffen, Jos H. G. M ; Zara, Marina ; Peters, Enno ; Van Roozendael, Michel ; Wagner, Thomas ; Maasakkers, Joannes D ; van der A, Ronald J ; Nightingale, Joanne ; De Rudder, Anne ; Irie, Hitoshi ; Pinardi, Gaia ; Lambert, Jean-Christopher ; Compernolle, Steven C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g1015-6ba0c41b5efcd22d780798891a8356536a65994fb234689fc70bd4ed597f9c7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Environmental aspects</topic><topic>Measurement</topic><topic>Meteorological research</topic><topic>Nitrogen dioxide</topic><topic>Observations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boersma, K. Folkert</creatorcontrib><creatorcontrib>Eskes, Henk J</creatorcontrib><creatorcontrib>Richter, Andreas</creatorcontrib><creatorcontrib>De Smedt, Isabelle</creatorcontrib><creatorcontrib>Lorente, Alba</creatorcontrib><creatorcontrib>Beirle, Steffen</creatorcontrib><creatorcontrib>van Geffen, Jos H. G. M</creatorcontrib><creatorcontrib>Zara, Marina</creatorcontrib><creatorcontrib>Peters, Enno</creatorcontrib><creatorcontrib>Van Roozendael, Michel</creatorcontrib><creatorcontrib>Wagner, Thomas</creatorcontrib><creatorcontrib>Maasakkers, Joannes D</creatorcontrib><creatorcontrib>van der A, Ronald J</creatorcontrib><creatorcontrib>Nightingale, Joanne</creatorcontrib><creatorcontrib>De Rudder, Anne</creatorcontrib><creatorcontrib>Irie, Hitoshi</creatorcontrib><creatorcontrib>Pinardi, Gaia</creatorcontrib><creatorcontrib>Lambert, Jean-Christopher</creatorcontrib><creatorcontrib>Compernolle, Steven C</creatorcontrib><collection>Gale In Context: Science</collection><jtitle>Atmospheric measurement techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boersma, K. Folkert</au><au>Eskes, Henk J</au><au>Richter, Andreas</au><au>De Smedt, Isabelle</au><au>Lorente, Alba</au><au>Beirle, Steffen</au><au>van Geffen, Jos H. G. M</au><au>Zara, Marina</au><au>Peters, Enno</au><au>Van Roozendael, Michel</au><au>Wagner, Thomas</au><au>Maasakkers, Joannes D</au><au>van der A, Ronald J</au><au>Nightingale, Joanne</au><au>De Rudder, Anne</au><au>Irie, Hitoshi</au><au>Pinardi, Gaia</au><au>Lambert, Jean-Christopher</au><au>Compernolle, Steven C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving algorithms and uncertainty estimates for satellite NO.sub.2 retrievals: results from the quality assurance for the essential climate variables project</atitle><jtitle>Atmospheric measurement techniques</jtitle><date>2018-12-17</date><risdate>2018</risdate><volume>11</volume><issue>12</issue><spage>6651</spage><pages>6651-</pages><issn>1867-1381</issn><eissn>1867-8548</eissn><abstract>Global observations of tropospheric nitrogen dioxide (NO.sub.2) columns have been shown to be feasible from space, but consistent multi-sensor records do not yet exist, nor are they covered by planned activities at the international level. Harmonised, multi-decadal records of NO.sub.2 columns and their associated uncertainties can provide crucial information on how the emissions and concentrations of nitrogen oxides evolve over time. Here we describe the development of a new, community best-practice NO.sub.2 retrieval algorithm based on a synthesis of existing approaches. Detailed comparisons of these approaches led us to implement an enhanced spectral fitting method for NO.sub.2, a 1°  ×  1° TM5-MP data assimilation scheme to estimate the stratospheric background and improve air mass factor calculations. Guided by the needs expressed by data users, producers, and WMO GCOS guidelines, we incorporated detailed per-pixel uncertainty information in the data product, along with easily traceable information on the relevant quality aspects of the retrieval. We applied the improved QA4ECV NO.sub.2 algorithm to the most current level-1 data sets to produce a complete 22-year data record that includes GOME (1995--2003), SCIAMACHY (2002--2012), GOME-2(A) (2007 onwards) and OMI (2004 onwards). The QA4ECV NO.sub.2 spectral fitting recommendations and TM5-MP stratospheric column and air mass factor approach are currently also applied to S5P-TROPOMI. The uncertainties in the QA4ECV tropospheric NO.sub.2 columns amount to typically 40 % over polluted scenes. The first validation results of the QA4ECV OMI NO.sub.2 columns and their uncertainties over Tai'an, China, in June 2006 suggest a small bias (−2 %) and better precision than suggested by uncertainty propagation. We conclude that our improved QA4ECV NO.sub.2 long-term data record is providing valuable information to quantitatively constrain emissions, deposition, and trends in nitrogen oxides on a global scale.</abstract><pub>Copernicus GmbH</pub><tpages>6651</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1867-1381
ispartof Atmospheric measurement techniques, 2018-12, Vol.11 (12), p.6651
issn 1867-1381
1867-8548
language eng
recordid cdi_gale_infotracmisc_A566058185
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Environmental aspects
Measurement
Meteorological research
Nitrogen dioxide
Observations
title Improving algorithms and uncertainty estimates for satellite NO.sub.2 retrievals: results from the quality assurance for the essential climate variables project
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T08%3A52%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20algorithms%20and%20uncertainty%20estimates%20for%20satellite%20NO.sub.2%20retrievals:%20results%20from%20the%20quality%20assurance%20for%20the%20essential%20climate%20variables%20project&rft.jtitle=Atmospheric%20measurement%20techniques&rft.au=Boersma,%20K.%20Folkert&rft.date=2018-12-17&rft.volume=11&rft.issue=12&rft.spage=6651&rft.pages=6651-&rft.issn=1867-1381&rft.eissn=1867-8548&rft_id=info:doi/&rft_dat=%3Cgale%3EA566058185%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A566058185&rfr_iscdi=true