Use of random forests regression for predicting IRI of asphalt pavements

•Introducing random forests to predict IRI.•Identifying variables critical to the evolution of IRI.•RFR significantly outperformed the linear regression regarding R2 and RMSE.•The initial IRI is the most critical factor to the evolution of IRI. Random forest is a powerful machine learning algorithm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Construction & building materials 2018-11, Vol.189, p.890-897
Hauptverfasser: Gong, Hongren, Sun, Yiren, Shu, Xiang, Huang, Baoshan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 897
container_issue
container_start_page 890
container_title Construction & building materials
container_volume 189
creator Gong, Hongren
Sun, Yiren
Shu, Xiang
Huang, Baoshan
description •Introducing random forests to predict IRI.•Identifying variables critical to the evolution of IRI.•RFR significantly outperformed the linear regression regarding R2 and RMSE.•The initial IRI is the most critical factor to the evolution of IRI. Random forest is a powerful machine learning algorithm with demonstrated success. In this study, the authors developed a random forests regression (RFR) model to estimate the international roughness index (IRI) of flexible pavements from distress measurements, traffic, climatic, maintenance and structural data. To validate the model, more than 11,000 samples were collected from the database of long-term pavement performance (LTPP) program, with 80% randomly sampled data for training and 20% of them for testing the RFR model. The performance of the RFR model was then compared with that of the regularized linear regression model. The results showed that the RFR model significantly outperformed the linear regression model, with coefficients of determination (R2) greater than 0.95 in both the training and test sets. The variable importance score obtained from the RFR revealed that the initial IRI was the most important factor affecting the development of the IRI. In addition, the transverse cracking, fatigue cracking, rutting, annual average precipitation and service age had important influences on the IRI. Other distresses such as longitudinal cracking, edge cracking, aggregate polishing, and potholes exerted little impact on the evolution of the IRI.
doi_str_mv 10.1016/j.conbuildmat.2018.09.017
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracmisc_A565200105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A565200105</galeid><els_id>S0950061818321937</els_id><sourcerecordid>A565200105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c516t-5486df3a44b11859b9dadecfe496754bc44cb2b73187d6c2e2572c75199ac39b3</originalsourceid><addsrcrecordid>eNqNkcFq3DAQhkVoodu07-DQa-1KWku2jmFpk4VAoTRnIUtjR4stLRptoG9fmc0hgT2EOWgYvn8Q8xFyw2jDKJM_Do2NYTj52S0mN5yyvqGqoay7IhvWd6qmgssPZEOVoDWVrP9EPiMeKKWSS74h948IVRyrZIKLSzXGBJixSjCVBn0M66g6JnDeZh-mav9nv_IGj09mztXRPMMCIeMX8nE0M8LXl_eaPP76-Xd3Xz_8vtvvbh9qK5jMtWh76cataduBsV6oQTnjwI7QKtmJdrBtawc-dNvyeSctBy46bjvBlDJ2q4btNfl23juZGbQPY8zJ2MWj1bdCCk4po6JQ9QVqggDJzDHA6Mv4Dd9c4Es5WLy9GPj-KjCc0If1XgH99JRxMifEt7g64zZFxASjPia_mPRPM6pXkfqgX4nUq0hNlS4iS3Z3zkI567OHpNF6CLYoSWCzdtG_Y8t_0mSrRg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Use of random forests regression for predicting IRI of asphalt pavements</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Gong, Hongren ; Sun, Yiren ; Shu, Xiang ; Huang, Baoshan</creator><creatorcontrib>Gong, Hongren ; Sun, Yiren ; Shu, Xiang ; Huang, Baoshan</creatorcontrib><description>•Introducing random forests to predict IRI.•Identifying variables critical to the evolution of IRI.•RFR significantly outperformed the linear regression regarding R2 and RMSE.•The initial IRI is the most critical factor to the evolution of IRI. Random forest is a powerful machine learning algorithm with demonstrated success. In this study, the authors developed a random forests regression (RFR) model to estimate the international roughness index (IRI) of flexible pavements from distress measurements, traffic, climatic, maintenance and structural data. To validate the model, more than 11,000 samples were collected from the database of long-term pavement performance (LTPP) program, with 80% randomly sampled data for training and 20% of them for testing the RFR model. The performance of the RFR model was then compared with that of the regularized linear regression model. The results showed that the RFR model significantly outperformed the linear regression model, with coefficients of determination (R2) greater than 0.95 in both the training and test sets. The variable importance score obtained from the RFR revealed that the initial IRI was the most important factor affecting the development of the IRI. In addition, the transverse cracking, fatigue cracking, rutting, annual average precipitation and service age had important influences on the IRI. Other distresses such as longitudinal cracking, edge cracking, aggregate polishing, and potholes exerted little impact on the evolution of the IRI.</description><identifier>ISSN: 0950-0618</identifier><identifier>EISSN: 1879-0526</identifier><identifier>DOI: 10.1016/j.conbuildmat.2018.09.017</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Algorithms ; Analysis ; Asphalt pavements ; Concrete cracking ; Data mining ; Decision tree ; Forests ; LTPP ; Machine learning ; Management ; Mechanical properties ; Pavement ; Random forests ; Regression analysis ; Regression tree ; Ride quality ; Roughness</subject><ispartof>Construction &amp; building materials, 2018-11, Vol.189, p.890-897</ispartof><rights>2018 Elsevier Ltd</rights><rights>COPYRIGHT 2018 Reed Business Information, Inc. (US)</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c516t-5486df3a44b11859b9dadecfe496754bc44cb2b73187d6c2e2572c75199ac39b3</citedby><cites>FETCH-LOGICAL-c516t-5486df3a44b11859b9dadecfe496754bc44cb2b73187d6c2e2572c75199ac39b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.conbuildmat.2018.09.017$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids></links><search><creatorcontrib>Gong, Hongren</creatorcontrib><creatorcontrib>Sun, Yiren</creatorcontrib><creatorcontrib>Shu, Xiang</creatorcontrib><creatorcontrib>Huang, Baoshan</creatorcontrib><title>Use of random forests regression for predicting IRI of asphalt pavements</title><title>Construction &amp; building materials</title><description>•Introducing random forests to predict IRI.•Identifying variables critical to the evolution of IRI.•RFR significantly outperformed the linear regression regarding R2 and RMSE.•The initial IRI is the most critical factor to the evolution of IRI. Random forest is a powerful machine learning algorithm with demonstrated success. In this study, the authors developed a random forests regression (RFR) model to estimate the international roughness index (IRI) of flexible pavements from distress measurements, traffic, climatic, maintenance and structural data. To validate the model, more than 11,000 samples were collected from the database of long-term pavement performance (LTPP) program, with 80% randomly sampled data for training and 20% of them for testing the RFR model. The performance of the RFR model was then compared with that of the regularized linear regression model. The results showed that the RFR model significantly outperformed the linear regression model, with coefficients of determination (R2) greater than 0.95 in both the training and test sets. The variable importance score obtained from the RFR revealed that the initial IRI was the most important factor affecting the development of the IRI. In addition, the transverse cracking, fatigue cracking, rutting, annual average precipitation and service age had important influences on the IRI. Other distresses such as longitudinal cracking, edge cracking, aggregate polishing, and potholes exerted little impact on the evolution of the IRI.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Asphalt pavements</subject><subject>Concrete cracking</subject><subject>Data mining</subject><subject>Decision tree</subject><subject>Forests</subject><subject>LTPP</subject><subject>Machine learning</subject><subject>Management</subject><subject>Mechanical properties</subject><subject>Pavement</subject><subject>Random forests</subject><subject>Regression analysis</subject><subject>Regression tree</subject><subject>Ride quality</subject><subject>Roughness</subject><issn>0950-0618</issn><issn>1879-0526</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNqNkcFq3DAQhkVoodu07-DQa-1KWku2jmFpk4VAoTRnIUtjR4stLRptoG9fmc0hgT2EOWgYvn8Q8xFyw2jDKJM_Do2NYTj52S0mN5yyvqGqoay7IhvWd6qmgssPZEOVoDWVrP9EPiMeKKWSS74h948IVRyrZIKLSzXGBJixSjCVBn0M66g6JnDeZh-mav9nv_IGj09mztXRPMMCIeMX8nE0M8LXl_eaPP76-Xd3Xz_8vtvvbh9qK5jMtWh76cataduBsV6oQTnjwI7QKtmJdrBtawc-dNvyeSctBy46bjvBlDJ2q4btNfl23juZGbQPY8zJ2MWj1bdCCk4po6JQ9QVqggDJzDHA6Mv4Dd9c4Es5WLy9GPj-KjCc0If1XgH99JRxMifEt7g64zZFxASjPia_mPRPM6pXkfqgX4nUq0hNlS4iS3Z3zkI567OHpNF6CLYoSWCzdtG_Y8t_0mSrRg</recordid><startdate>20181120</startdate><enddate>20181120</enddate><creator>Gong, Hongren</creator><creator>Sun, Yiren</creator><creator>Shu, Xiang</creator><creator>Huang, Baoshan</creator><general>Elsevier Ltd</general><general>Reed Business Information, Inc. (US)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope></search><sort><creationdate>20181120</creationdate><title>Use of random forests regression for predicting IRI of asphalt pavements</title><author>Gong, Hongren ; Sun, Yiren ; Shu, Xiang ; Huang, Baoshan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c516t-5486df3a44b11859b9dadecfe496754bc44cb2b73187d6c2e2572c75199ac39b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Asphalt pavements</topic><topic>Concrete cracking</topic><topic>Data mining</topic><topic>Decision tree</topic><topic>Forests</topic><topic>LTPP</topic><topic>Machine learning</topic><topic>Management</topic><topic>Mechanical properties</topic><topic>Pavement</topic><topic>Random forests</topic><topic>Regression analysis</topic><topic>Regression tree</topic><topic>Ride quality</topic><topic>Roughness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gong, Hongren</creatorcontrib><creatorcontrib>Sun, Yiren</creatorcontrib><creatorcontrib>Shu, Xiang</creatorcontrib><creatorcontrib>Huang, Baoshan</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><jtitle>Construction &amp; building materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gong, Hongren</au><au>Sun, Yiren</au><au>Shu, Xiang</au><au>Huang, Baoshan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of random forests regression for predicting IRI of asphalt pavements</atitle><jtitle>Construction &amp; building materials</jtitle><date>2018-11-20</date><risdate>2018</risdate><volume>189</volume><spage>890</spage><epage>897</epage><pages>890-897</pages><issn>0950-0618</issn><eissn>1879-0526</eissn><abstract>•Introducing random forests to predict IRI.•Identifying variables critical to the evolution of IRI.•RFR significantly outperformed the linear regression regarding R2 and RMSE.•The initial IRI is the most critical factor to the evolution of IRI. Random forest is a powerful machine learning algorithm with demonstrated success. In this study, the authors developed a random forests regression (RFR) model to estimate the international roughness index (IRI) of flexible pavements from distress measurements, traffic, climatic, maintenance and structural data. To validate the model, more than 11,000 samples were collected from the database of long-term pavement performance (LTPP) program, with 80% randomly sampled data for training and 20% of them for testing the RFR model. The performance of the RFR model was then compared with that of the regularized linear regression model. The results showed that the RFR model significantly outperformed the linear regression model, with coefficients of determination (R2) greater than 0.95 in both the training and test sets. The variable importance score obtained from the RFR revealed that the initial IRI was the most important factor affecting the development of the IRI. In addition, the transverse cracking, fatigue cracking, rutting, annual average precipitation and service age had important influences on the IRI. Other distresses such as longitudinal cracking, edge cracking, aggregate polishing, and potholes exerted little impact on the evolution of the IRI.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.conbuildmat.2018.09.017</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0950-0618
ispartof Construction & building materials, 2018-11, Vol.189, p.890-897
issn 0950-0618
1879-0526
language eng
recordid cdi_gale_infotracmisc_A565200105
source Elsevier ScienceDirect Journals Complete
subjects Algorithms
Analysis
Asphalt pavements
Concrete cracking
Data mining
Decision tree
Forests
LTPP
Machine learning
Management
Mechanical properties
Pavement
Random forests
Regression analysis
Regression tree
Ride quality
Roughness
title Use of random forests regression for predicting IRI of asphalt pavements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T19%3A46%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20random%20forests%20regression%20for%20predicting%20IRI%20of%20asphalt%20pavements&rft.jtitle=Construction%20&%20building%20materials&rft.au=Gong,%20Hongren&rft.date=2018-11-20&rft.volume=189&rft.spage=890&rft.epage=897&rft.pages=890-897&rft.issn=0950-0618&rft.eissn=1879-0526&rft_id=info:doi/10.1016/j.conbuildmat.2018.09.017&rft_dat=%3Cgale_cross%3EA565200105%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A565200105&rft_els_id=S0950061818321937&rfr_iscdi=true