THE BLOCK HESSENBERG PROCESS FOR MATRIX EQUATIONS
In the present paper, we first introduce a block variant of the Hessenberg process and discuss its properties. Then, we show how to apply the block Hessenberg process in order to solve linear systems with multiple right-hand sides. More precisely, we define the block CMRH method for solving linear s...
Gespeichert in:
Veröffentlicht in: | Electronic transactions on numerical analysis 2017-01, Vol.46, p.460 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 460 |
container_title | Electronic transactions on numerical analysis |
container_volume | 46 |
creator | Addam, M Heyouni, M Sadok, H |
description | In the present paper, we first introduce a block variant of the Hessenberg process and discuss its properties. Then, we show how to apply the block Hessenberg process in order to solve linear systems with multiple right-hand sides. More precisely, we define the block CMRH method for solving linear systems that share the same coefficient matrix. We also show how to apply this process for solving discrete Sylvester matrix equations. Finally, numerical comparisons are provided in order to compare the proposed new algorithms with other existing methods. Key words. Block Krylov subspace methods, Hessenberg process, Arnoldi process, CMRH, GMRES, low-rank matrix equations. AMS subject classifications. 65F10, 65F30 |
format | Article |
fullrecord | <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracmisc_A556469118</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A556469118</galeid><sourcerecordid>A556469118</sourcerecordid><originalsourceid>FETCH-LOGICAL-g152t-414bc231f0eb7808d9c812e0c43ad0697e565f412df672bf99dd4be05b5a8fb83</originalsourceid><addsrcrecordid>eNptTFtLwzAYDaLgnP6HgM-VfGmSJo9dydZiXbTtwLfR3EZlF7D7_9gxH3yQ83AunHNu0AyIyhJGRHZ70UImSkB6jx7G8YsQUIzyGYKu1HhRm-IVl7pt9XqhmxV-b0wxObw0DX7Lu6b6xPpjk3eVWbeP6C72-zE8_fIcbZa6K8qkNquqyOtkB5yeEwbMOppCJMFmkkivnAQaiGNp74lQWeCCRwbUR5FRG5XyntlAuOW9jFamc_R8_d31-7AdjvF0_u7dYRjdNudcMKEALq2Xf1oTfDgM7nQMcZjyP4Mf08dLaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>THE BLOCK HESSENBERG PROCESS FOR MATRIX EQUATIONS</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Addam, M ; Heyouni, M ; Sadok, H</creator><creatorcontrib>Addam, M ; Heyouni, M ; Sadok, H</creatorcontrib><description>In the present paper, we first introduce a block variant of the Hessenberg process and discuss its properties. Then, we show how to apply the block Hessenberg process in order to solve linear systems with multiple right-hand sides. More precisely, we define the block CMRH method for solving linear systems that share the same coefficient matrix. We also show how to apply this process for solving discrete Sylvester matrix equations. Finally, numerical comparisons are provided in order to compare the proposed new algorithms with other existing methods. Key words. Block Krylov subspace methods, Hessenberg process, Arnoldi process, CMRH, GMRES, low-rank matrix equations. AMS subject classifications. 65F10, 65F30</description><identifier>ISSN: 1068-9613</identifier><identifier>EISSN: 1097-4067</identifier><language>eng</language><publisher>Institute of Computational Mathematics</publisher><subject>Equations (Mathematics) ; Linear systems ; Mathematical research ; Matrices (Mathematics)</subject><ispartof>Electronic transactions on numerical analysis, 2017-01, Vol.46, p.460</ispartof><rights>COPYRIGHT 2017 Institute of Computational Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Addam, M</creatorcontrib><creatorcontrib>Heyouni, M</creatorcontrib><creatorcontrib>Sadok, H</creatorcontrib><title>THE BLOCK HESSENBERG PROCESS FOR MATRIX EQUATIONS</title><title>Electronic transactions on numerical analysis</title><description>In the present paper, we first introduce a block variant of the Hessenberg process and discuss its properties. Then, we show how to apply the block Hessenberg process in order to solve linear systems with multiple right-hand sides. More precisely, we define the block CMRH method for solving linear systems that share the same coefficient matrix. We also show how to apply this process for solving discrete Sylvester matrix equations. Finally, numerical comparisons are provided in order to compare the proposed new algorithms with other existing methods. Key words. Block Krylov subspace methods, Hessenberg process, Arnoldi process, CMRH, GMRES, low-rank matrix equations. AMS subject classifications. 65F10, 65F30</description><subject>Equations (Mathematics)</subject><subject>Linear systems</subject><subject>Mathematical research</subject><subject>Matrices (Mathematics)</subject><issn>1068-9613</issn><issn>1097-4067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNptTFtLwzAYDaLgnP6HgM-VfGmSJo9dydZiXbTtwLfR3EZlF7D7_9gxH3yQ83AunHNu0AyIyhJGRHZ70UImSkB6jx7G8YsQUIzyGYKu1HhRm-IVl7pt9XqhmxV-b0wxObw0DX7Lu6b6xPpjk3eVWbeP6C72-zE8_fIcbZa6K8qkNquqyOtkB5yeEwbMOppCJMFmkkivnAQaiGNp74lQWeCCRwbUR5FRG5XyntlAuOW9jFamc_R8_d31-7AdjvF0_u7dYRjdNudcMKEALq2Xf1oTfDgM7nQMcZjyP4Mf08dLaQ</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Addam, M</creator><creator>Heyouni, M</creator><creator>Sadok, H</creator><general>Institute of Computational Mathematics</general><scope/></search><sort><creationdate>20170101</creationdate><title>THE BLOCK HESSENBERG PROCESS FOR MATRIX EQUATIONS</title><author>Addam, M ; Heyouni, M ; Sadok, H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g152t-414bc231f0eb7808d9c812e0c43ad0697e565f412df672bf99dd4be05b5a8fb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Equations (Mathematics)</topic><topic>Linear systems</topic><topic>Mathematical research</topic><topic>Matrices (Mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Addam, M</creatorcontrib><creatorcontrib>Heyouni, M</creatorcontrib><creatorcontrib>Sadok, H</creatorcontrib><jtitle>Electronic transactions on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Addam, M</au><au>Heyouni, M</au><au>Sadok, H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>THE BLOCK HESSENBERG PROCESS FOR MATRIX EQUATIONS</atitle><jtitle>Electronic transactions on numerical analysis</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>46</volume><spage>460</spage><pages>460-</pages><issn>1068-9613</issn><eissn>1097-4067</eissn><abstract>In the present paper, we first introduce a block variant of the Hessenberg process and discuss its properties. Then, we show how to apply the block Hessenberg process in order to solve linear systems with multiple right-hand sides. More precisely, we define the block CMRH method for solving linear systems that share the same coefficient matrix. We also show how to apply this process for solving discrete Sylvester matrix equations. Finally, numerical comparisons are provided in order to compare the proposed new algorithms with other existing methods. Key words. Block Krylov subspace methods, Hessenberg process, Arnoldi process, CMRH, GMRES, low-rank matrix equations. AMS subject classifications. 65F10, 65F30</abstract><pub>Institute of Computational Mathematics</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1068-9613 |
ispartof | Electronic transactions on numerical analysis, 2017-01, Vol.46, p.460 |
issn | 1068-9613 1097-4067 |
language | eng |
recordid | cdi_gale_infotracmisc_A556469118 |
source | EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Equations (Mathematics) Linear systems Mathematical research Matrices (Mathematics) |
title | THE BLOCK HESSENBERG PROCESS FOR MATRIX EQUATIONS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A23%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=THE%20BLOCK%20HESSENBERG%20PROCESS%20FOR%20MATRIX%20EQUATIONS&rft.jtitle=Electronic%20transactions%20on%20numerical%20analysis&rft.au=Addam,%20M&rft.date=2017-01-01&rft.volume=46&rft.spage=460&rft.pages=460-&rft.issn=1068-9613&rft.eissn=1097-4067&rft_id=info:doi/&rft_dat=%3Cgale%3EA556469118%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A556469118&rfr_iscdi=true |