THE BLOCK HESSENBERG PROCESS FOR MATRIX EQUATIONS

In the present paper, we first introduce a block variant of the Hessenberg process and discuss its properties. Then, we show how to apply the block Hessenberg process in order to solve linear systems with multiple right-hand sides. More precisely, we define the block CMRH method for solving linear s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic transactions on numerical analysis 2017-01, Vol.46, p.460
Hauptverfasser: Addam, M, Heyouni, M, Sadok, H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 460
container_title Electronic transactions on numerical analysis
container_volume 46
creator Addam, M
Heyouni, M
Sadok, H
description In the present paper, we first introduce a block variant of the Hessenberg process and discuss its properties. Then, we show how to apply the block Hessenberg process in order to solve linear systems with multiple right-hand sides. More precisely, we define the block CMRH method for solving linear systems that share the same coefficient matrix. We also show how to apply this process for solving discrete Sylvester matrix equations. Finally, numerical comparisons are provided in order to compare the proposed new algorithms with other existing methods. Key words. Block Krylov subspace methods, Hessenberg process, Arnoldi process, CMRH, GMRES, low-rank matrix equations. AMS subject classifications. 65F10, 65F30
format Article
fullrecord <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracmisc_A556469118</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A556469118</galeid><sourcerecordid>A556469118</sourcerecordid><originalsourceid>FETCH-LOGICAL-g152t-414bc231f0eb7808d9c812e0c43ad0697e565f412df672bf99dd4be05b5a8fb83</originalsourceid><addsrcrecordid>eNptTFtLwzAYDaLgnP6HgM-VfGmSJo9dydZiXbTtwLfR3EZlF7D7_9gxH3yQ83AunHNu0AyIyhJGRHZ70UImSkB6jx7G8YsQUIzyGYKu1HhRm-IVl7pt9XqhmxV-b0wxObw0DX7Lu6b6xPpjk3eVWbeP6C72-zE8_fIcbZa6K8qkNquqyOtkB5yeEwbMOppCJMFmkkivnAQaiGNp74lQWeCCRwbUR5FRG5XyntlAuOW9jFamc_R8_d31-7AdjvF0_u7dYRjdNudcMKEALq2Xf1oTfDgM7nQMcZjyP4Mf08dLaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>THE BLOCK HESSENBERG PROCESS FOR MATRIX EQUATIONS</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Addam, M ; Heyouni, M ; Sadok, H</creator><creatorcontrib>Addam, M ; Heyouni, M ; Sadok, H</creatorcontrib><description>In the present paper, we first introduce a block variant of the Hessenberg process and discuss its properties. Then, we show how to apply the block Hessenberg process in order to solve linear systems with multiple right-hand sides. More precisely, we define the block CMRH method for solving linear systems that share the same coefficient matrix. We also show how to apply this process for solving discrete Sylvester matrix equations. Finally, numerical comparisons are provided in order to compare the proposed new algorithms with other existing methods. Key words. Block Krylov subspace methods, Hessenberg process, Arnoldi process, CMRH, GMRES, low-rank matrix equations. AMS subject classifications. 65F10, 65F30</description><identifier>ISSN: 1068-9613</identifier><identifier>EISSN: 1097-4067</identifier><language>eng</language><publisher>Institute of Computational Mathematics</publisher><subject>Equations (Mathematics) ; Linear systems ; Mathematical research ; Matrices (Mathematics)</subject><ispartof>Electronic transactions on numerical analysis, 2017-01, Vol.46, p.460</ispartof><rights>COPYRIGHT 2017 Institute of Computational Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Addam, M</creatorcontrib><creatorcontrib>Heyouni, M</creatorcontrib><creatorcontrib>Sadok, H</creatorcontrib><title>THE BLOCK HESSENBERG PROCESS FOR MATRIX EQUATIONS</title><title>Electronic transactions on numerical analysis</title><description>In the present paper, we first introduce a block variant of the Hessenberg process and discuss its properties. Then, we show how to apply the block Hessenberg process in order to solve linear systems with multiple right-hand sides. More precisely, we define the block CMRH method for solving linear systems that share the same coefficient matrix. We also show how to apply this process for solving discrete Sylvester matrix equations. Finally, numerical comparisons are provided in order to compare the proposed new algorithms with other existing methods. Key words. Block Krylov subspace methods, Hessenberg process, Arnoldi process, CMRH, GMRES, low-rank matrix equations. AMS subject classifications. 65F10, 65F30</description><subject>Equations (Mathematics)</subject><subject>Linear systems</subject><subject>Mathematical research</subject><subject>Matrices (Mathematics)</subject><issn>1068-9613</issn><issn>1097-4067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNptTFtLwzAYDaLgnP6HgM-VfGmSJo9dydZiXbTtwLfR3EZlF7D7_9gxH3yQ83AunHNu0AyIyhJGRHZ70UImSkB6jx7G8YsQUIzyGYKu1HhRm-IVl7pt9XqhmxV-b0wxObw0DX7Lu6b6xPpjk3eVWbeP6C72-zE8_fIcbZa6K8qkNquqyOtkB5yeEwbMOppCJMFmkkivnAQaiGNp74lQWeCCRwbUR5FRG5XyntlAuOW9jFamc_R8_d31-7AdjvF0_u7dYRjdNudcMKEALq2Xf1oTfDgM7nQMcZjyP4Mf08dLaQ</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Addam, M</creator><creator>Heyouni, M</creator><creator>Sadok, H</creator><general>Institute of Computational Mathematics</general><scope/></search><sort><creationdate>20170101</creationdate><title>THE BLOCK HESSENBERG PROCESS FOR MATRIX EQUATIONS</title><author>Addam, M ; Heyouni, M ; Sadok, H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g152t-414bc231f0eb7808d9c812e0c43ad0697e565f412df672bf99dd4be05b5a8fb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Equations (Mathematics)</topic><topic>Linear systems</topic><topic>Mathematical research</topic><topic>Matrices (Mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Addam, M</creatorcontrib><creatorcontrib>Heyouni, M</creatorcontrib><creatorcontrib>Sadok, H</creatorcontrib><jtitle>Electronic transactions on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Addam, M</au><au>Heyouni, M</au><au>Sadok, H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>THE BLOCK HESSENBERG PROCESS FOR MATRIX EQUATIONS</atitle><jtitle>Electronic transactions on numerical analysis</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>46</volume><spage>460</spage><pages>460-</pages><issn>1068-9613</issn><eissn>1097-4067</eissn><abstract>In the present paper, we first introduce a block variant of the Hessenberg process and discuss its properties. Then, we show how to apply the block Hessenberg process in order to solve linear systems with multiple right-hand sides. More precisely, we define the block CMRH method for solving linear systems that share the same coefficient matrix. We also show how to apply this process for solving discrete Sylvester matrix equations. Finally, numerical comparisons are provided in order to compare the proposed new algorithms with other existing methods. Key words. Block Krylov subspace methods, Hessenberg process, Arnoldi process, CMRH, GMRES, low-rank matrix equations. AMS subject classifications. 65F10, 65F30</abstract><pub>Institute of Computational Mathematics</pub></addata></record>
fulltext fulltext
identifier ISSN: 1068-9613
ispartof Electronic transactions on numerical analysis, 2017-01, Vol.46, p.460
issn 1068-9613
1097-4067
language eng
recordid cdi_gale_infotracmisc_A556469118
source EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Equations (Mathematics)
Linear systems
Mathematical research
Matrices (Mathematics)
title THE BLOCK HESSENBERG PROCESS FOR MATRIX EQUATIONS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A23%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=THE%20BLOCK%20HESSENBERG%20PROCESS%20FOR%20MATRIX%20EQUATIONS&rft.jtitle=Electronic%20transactions%20on%20numerical%20analysis&rft.au=Addam,%20M&rft.date=2017-01-01&rft.volume=46&rft.spage=460&rft.pages=460-&rft.issn=1068-9613&rft.eissn=1097-4067&rft_id=info:doi/&rft_dat=%3Cgale%3EA556469118%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A556469118&rfr_iscdi=true