APPLICATION OF THE COLLOCATION METHOD WITH B-SPLINES TO THE GEW EQUATION

In this paper, the generalized equal width (GEW) wave equation is solved numerically by using a quintic B-spline collocation algorithm with two different linearization techniques. Also, a linear stability analysis of the numerical scheme based on the von Neumann method is investigated. The numerical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic transactions on numerical analysis 2017-01, Vol.46, p.71
Hauptverfasser: Zeybek, Halil, Karakoc, S. Battal Gazi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 71
container_title Electronic transactions on numerical analysis
container_volume 46
creator Zeybek, Halil
Karakoc, S. Battal Gazi
description In this paper, the generalized equal width (GEW) wave equation is solved numerically by using a quintic B-spline collocation algorithm with two different linearization techniques. Also, a linear stability analysis of the numerical scheme based on the von Neumann method is investigated. The numerical algorithm is applied to three test problems consisting of a single solitary wave, the interaction of two solitary waves, and a Maxwellian initial condition. In order to determine the performance of the numerical method, we compute the error in the [L.sub.2] - and [L.sub.[infinity]] - norms and in the invariants [I.sub.1], [I.sub.2], and [I.sub.3] of the GEW equation. These calculations are compared with earlier studies. Afterwards, the motion of solitary waves according to different parameters is designed. Key words. GEW equation, finite element method, quintic B-spline, soliton, solitary waves AMS subject classifications. 41A15, 65N30, 76B25
format Article
fullrecord <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracmisc_A556469102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A556469102</galeid><sourcerecordid>A556469102</sourcerecordid><originalsourceid>FETCH-LOGICAL-g222t-180a046430b9917ea1becf19a4b879ba6fc3caf7010400aa10206cf1acdea0093</originalsourceid><addsrcrecordid>eNptzMtqwzAQBVBRWmia9B8EXauMbFm2lq6rxAY3SohClmGsSMElD6jz_1RNs-iizGKGy5l7R0YcVM4EyPz-55YFU5Knj-RpGD4BuBJJNiJ1uVi0TVXaxsypmVJba1qZtjW36EPb2rzTTWNr-sZW0c71ilpzhTO9oXq5vsoJeQh4GPzzbY_JeqptVbPWzGJ_y_ZJklwYLwBBSJFCpxTPPfLOu8AViq7IVYcyuNRhyIGDAEDkkICMAN3OI4BKx-Tlt3ePB7_tT-F8-UJ37Ae3LbNMCqniS1Sv_6g4O3_s3fnkQx_zPw_fbD9RVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>APPLICATION OF THE COLLOCATION METHOD WITH B-SPLINES TO THE GEW EQUATION</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Zeybek, Halil ; Karakoc, S. Battal Gazi</creator><creatorcontrib>Zeybek, Halil ; Karakoc, S. Battal Gazi</creatorcontrib><description>In this paper, the generalized equal width (GEW) wave equation is solved numerically by using a quintic B-spline collocation algorithm with two different linearization techniques. Also, a linear stability analysis of the numerical scheme based on the von Neumann method is investigated. The numerical algorithm is applied to three test problems consisting of a single solitary wave, the interaction of two solitary waves, and a Maxwellian initial condition. In order to determine the performance of the numerical method, we compute the error in the [L.sub.2] - and [L.sub.[infinity]] - norms and in the invariants [I.sub.1], [I.sub.2], and [I.sub.3] of the GEW equation. These calculations are compared with earlier studies. Afterwards, the motion of solitary waves according to different parameters is designed. Key words. GEW equation, finite element method, quintic B-spline, soliton, solitary waves AMS subject classifications. 41A15, 65N30, 76B25</description><identifier>ISSN: 1068-9613</identifier><identifier>EISSN: 1097-4067</identifier><language>eng</language><publisher>Institute of Computational Mathematics</publisher><subject>Algorithms ; Mathematical research ; Solitons ; Wave equations</subject><ispartof>Electronic transactions on numerical analysis, 2017-01, Vol.46, p.71</ispartof><rights>COPYRIGHT 2017 Institute of Computational Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Zeybek, Halil</creatorcontrib><creatorcontrib>Karakoc, S. Battal Gazi</creatorcontrib><title>APPLICATION OF THE COLLOCATION METHOD WITH B-SPLINES TO THE GEW EQUATION</title><title>Electronic transactions on numerical analysis</title><description>In this paper, the generalized equal width (GEW) wave equation is solved numerically by using a quintic B-spline collocation algorithm with two different linearization techniques. Also, a linear stability analysis of the numerical scheme based on the von Neumann method is investigated. The numerical algorithm is applied to three test problems consisting of a single solitary wave, the interaction of two solitary waves, and a Maxwellian initial condition. In order to determine the performance of the numerical method, we compute the error in the [L.sub.2] - and [L.sub.[infinity]] - norms and in the invariants [I.sub.1], [I.sub.2], and [I.sub.3] of the GEW equation. These calculations are compared with earlier studies. Afterwards, the motion of solitary waves according to different parameters is designed. Key words. GEW equation, finite element method, quintic B-spline, soliton, solitary waves AMS subject classifications. 41A15, 65N30, 76B25</description><subject>Algorithms</subject><subject>Mathematical research</subject><subject>Solitons</subject><subject>Wave equations</subject><issn>1068-9613</issn><issn>1097-4067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNptzMtqwzAQBVBRWmia9B8EXauMbFm2lq6rxAY3SohClmGsSMElD6jz_1RNs-iizGKGy5l7R0YcVM4EyPz-55YFU5Knj-RpGD4BuBJJNiJ1uVi0TVXaxsypmVJba1qZtjW36EPb2rzTTWNr-sZW0c71ilpzhTO9oXq5vsoJeQh4GPzzbY_JeqptVbPWzGJ_y_ZJklwYLwBBSJFCpxTPPfLOu8AViq7IVYcyuNRhyIGDAEDkkICMAN3OI4BKx-Tlt3ePB7_tT-F8-UJ37Ae3LbNMCqniS1Sv_6g4O3_s3fnkQx_zPw_fbD9RVg</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Zeybek, Halil</creator><creator>Karakoc, S. Battal Gazi</creator><general>Institute of Computational Mathematics</general><scope/></search><sort><creationdate>20170101</creationdate><title>APPLICATION OF THE COLLOCATION METHOD WITH B-SPLINES TO THE GEW EQUATION</title><author>Zeybek, Halil ; Karakoc, S. Battal Gazi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g222t-180a046430b9917ea1becf19a4b879ba6fc3caf7010400aa10206cf1acdea0093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Mathematical research</topic><topic>Solitons</topic><topic>Wave equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeybek, Halil</creatorcontrib><creatorcontrib>Karakoc, S. Battal Gazi</creatorcontrib><jtitle>Electronic transactions on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeybek, Halil</au><au>Karakoc, S. Battal Gazi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>APPLICATION OF THE COLLOCATION METHOD WITH B-SPLINES TO THE GEW EQUATION</atitle><jtitle>Electronic transactions on numerical analysis</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>46</volume><spage>71</spage><pages>71-</pages><issn>1068-9613</issn><eissn>1097-4067</eissn><abstract>In this paper, the generalized equal width (GEW) wave equation is solved numerically by using a quintic B-spline collocation algorithm with two different linearization techniques. Also, a linear stability analysis of the numerical scheme based on the von Neumann method is investigated. The numerical algorithm is applied to three test problems consisting of a single solitary wave, the interaction of two solitary waves, and a Maxwellian initial condition. In order to determine the performance of the numerical method, we compute the error in the [L.sub.2] - and [L.sub.[infinity]] - norms and in the invariants [I.sub.1], [I.sub.2], and [I.sub.3] of the GEW equation. These calculations are compared with earlier studies. Afterwards, the motion of solitary waves according to different parameters is designed. Key words. GEW equation, finite element method, quintic B-spline, soliton, solitary waves AMS subject classifications. 41A15, 65N30, 76B25</abstract><pub>Institute of Computational Mathematics</pub></addata></record>
fulltext fulltext
identifier ISSN: 1068-9613
ispartof Electronic transactions on numerical analysis, 2017-01, Vol.46, p.71
issn 1068-9613
1097-4067
language eng
recordid cdi_gale_infotracmisc_A556469102
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Algorithms
Mathematical research
Solitons
Wave equations
title APPLICATION OF THE COLLOCATION METHOD WITH B-SPLINES TO THE GEW EQUATION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A25%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=APPLICATION%20OF%20THE%20COLLOCATION%20METHOD%20WITH%20B-SPLINES%20TO%20THE%20GEW%20EQUATION&rft.jtitle=Electronic%20transactions%20on%20numerical%20analysis&rft.au=Zeybek,%20Halil&rft.date=2017-01-01&rft.volume=46&rft.spage=71&rft.pages=71-&rft.issn=1068-9613&rft.eissn=1097-4067&rft_id=info:doi/&rft_dat=%3Cgale%3EA556469102%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A556469102&rfr_iscdi=true