Directional Distance Functions in DEA with Optimal Endogenous Directions

This paper is concerned with optimal directions in the directional distance function in data envelopment analysis. It is shown that the vector pointing in the direction that minimizes the Euclidean distance between the input–output vector ( X o , Y o ) and the efficient frontier, the input isoquant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Operations research 2018-07, Vol.66 (4), p.1068-1085
1. Verfasser: Petersen, Niels Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1085
container_issue 4
container_start_page 1068
container_title Operations research
container_volume 66
creator Petersen, Niels Christian
description This paper is concerned with optimal directions in the directional distance function in data envelopment analysis. It is shown that the vector pointing in the direction that minimizes the Euclidean distance between the input–output vector ( X o , Y o ) and the efficient frontier, the input isoquant reflecting output Y o , or the output isoquant reflecting input X o is optimal, because the corresponding vector of virtual multipliers defines the relative prices that maximize profit, cost, or revenue efficiency. The associated efficiency indicator is a value measure of technical efficiency in difference form with the Euclidean distance between ( X o , Y o ) and the efficient frontier, the Y o input isoquant, or the X o output isoquant as an equivalent directional distance quantity indicator. A linear combinatorial optimization program for computing the relevant value indicators of technical efficiency in multiplier space or the equivalent quantity indicators in terms of the relevant Euclidean distances is developed. A nonlinear and nonconvex optimization model for an estimation of the relevant value indicator of efficiency in multiplier space is also developed. Preliminary computational results are reported.
doi_str_mv 10.1287/opre.2017.1711
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_gale_infotracmisc_A553003605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A553003605</galeid><jstor_id>48748461</jstor_id><sourcerecordid>A553003605</sourcerecordid><originalsourceid>FETCH-LOGICAL-c565t-1f5d6ffc6a70b70c914ed7ce65dd716010af4d86ff3d98bad774da1db88e2b43</originalsourceid><addsrcrecordid>eNqFkktrGzEUhUVpoK6TbXeFgUJXGUea0WO8NH4kBUM2WWQnNJLGkbElV1dD238fTV2cGgxBIMHlO_elg9AXgiekasRdOEQ7qTAREyII-YBGhFW8ZJTXH9EI4xqXNafPn9BngC3GeMo4G6GHhYtWJxe82hULB0l5bYtV7__GoHC-WCxnxS-XXorHQ3L7jC29CRvrQw_FSQ3X6KpTO7A3_94xelotn-YP5frx_sd8ti51rpdK0jHDu05zJXArsJ4Sao3QljNjBOGYYNVR02SkNtOmVUYIahQxbdPYqqX1GH07pj3E8LO3kOQ29DE3D7IidVVRwvPAJ2qjdlY634UUld470HLGWJ2XwTHLVHmBypPZqHbB287l8Bk_ucDnY-ze6YuC72eCzCT7O21UDyDPwdv_wLYH5y3kC9zmJcGRv9SIjgEg2k4eYv6Z-EcSLAcvyMELcvCCHLyQBV-Pgi2kEE80bQRtKCdvmxiGint4L98r_Ri9Jg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132241646</pqid></control><display><type>article</type><title>Directional Distance Functions in DEA with Optimal Endogenous Directions</title><source>Informs</source><source>EBSCOhost Business Source Complete</source><source>Jstor Complete Legacy</source><creator>Petersen, Niels Christian</creator><creatorcontrib>Petersen, Niels Christian</creatorcontrib><description>This paper is concerned with optimal directions in the directional distance function in data envelopment analysis. It is shown that the vector pointing in the direction that minimizes the Euclidean distance between the input–output vector ( X o , Y o ) and the efficient frontier, the input isoquant reflecting output Y o , or the output isoquant reflecting input X o is optimal, because the corresponding vector of virtual multipliers defines the relative prices that maximize profit, cost, or revenue efficiency. The associated efficiency indicator is a value measure of technical efficiency in difference form with the Euclidean distance between ( X o , Y o ) and the efficient frontier, the Y o input isoquant, or the X o output isoquant as an equivalent directional distance quantity indicator. A linear combinatorial optimization program for computing the relevant value indicators of technical efficiency in multiplier space or the equivalent quantity indicators in terms of the relevant Euclidean distances is developed. A nonlinear and nonconvex optimization model for an estimation of the relevant value indicator of efficiency in multiplier space is also developed. Preliminary computational results are reported.</description><identifier>ISSN: 0030-364X</identifier><identifier>EISSN: 1526-5463</identifier><identifier>DOI: 10.1287/opre.2017.1711</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>Algebra ; Analysis ; Combinatorial analysis ; cost efficiency ; Data envelopment analysis ; directional distance function ; Efficiency ; efficiency indicator ; Equivalence ; Euclidean distance ; Euclidean geometry ; Indicators ; Mathematical optimization ; METHODS ; Operations research ; Optimization ; Pricing ; profit efficiency ; revenue efficiency</subject><ispartof>Operations research, 2018-07, Vol.66 (4), p.1068-1085</ispartof><rights>2018 INFORMS</rights><rights>COPYRIGHT 2018 Institute for Operations Research and the Management Sciences</rights><rights>Copyright Institute for Operations Research and the Management Sciences Jul/Aug 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c565t-1f5d6ffc6a70b70c914ed7ce65dd716010af4d86ff3d98bad774da1db88e2b43</citedby><cites>FETCH-LOGICAL-c565t-1f5d6ffc6a70b70c914ed7ce65dd716010af4d86ff3d98bad774da1db88e2b43</cites><orcidid>0000-0002-0002-2264</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48748461$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/opre.2017.1711$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,777,781,800,3679,27905,27906,57998,58231,62595</link.rule.ids></links><search><creatorcontrib>Petersen, Niels Christian</creatorcontrib><title>Directional Distance Functions in DEA with Optimal Endogenous Directions</title><title>Operations research</title><description>This paper is concerned with optimal directions in the directional distance function in data envelopment analysis. It is shown that the vector pointing in the direction that minimizes the Euclidean distance between the input–output vector ( X o , Y o ) and the efficient frontier, the input isoquant reflecting output Y o , or the output isoquant reflecting input X o is optimal, because the corresponding vector of virtual multipliers defines the relative prices that maximize profit, cost, or revenue efficiency. The associated efficiency indicator is a value measure of technical efficiency in difference form with the Euclidean distance between ( X o , Y o ) and the efficient frontier, the Y o input isoquant, or the X o output isoquant as an equivalent directional distance quantity indicator. A linear combinatorial optimization program for computing the relevant value indicators of technical efficiency in multiplier space or the equivalent quantity indicators in terms of the relevant Euclidean distances is developed. A nonlinear and nonconvex optimization model for an estimation of the relevant value indicator of efficiency in multiplier space is also developed. Preliminary computational results are reported.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Combinatorial analysis</subject><subject>cost efficiency</subject><subject>Data envelopment analysis</subject><subject>directional distance function</subject><subject>Efficiency</subject><subject>efficiency indicator</subject><subject>Equivalence</subject><subject>Euclidean distance</subject><subject>Euclidean geometry</subject><subject>Indicators</subject><subject>Mathematical optimization</subject><subject>METHODS</subject><subject>Operations research</subject><subject>Optimization</subject><subject>Pricing</subject><subject>profit efficiency</subject><subject>revenue efficiency</subject><issn>0030-364X</issn><issn>1526-5463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNqFkktrGzEUhUVpoK6TbXeFgUJXGUea0WO8NH4kBUM2WWQnNJLGkbElV1dD238fTV2cGgxBIMHlO_elg9AXgiekasRdOEQ7qTAREyII-YBGhFW8ZJTXH9EI4xqXNafPn9BngC3GeMo4G6GHhYtWJxe82hULB0l5bYtV7__GoHC-WCxnxS-XXorHQ3L7jC29CRvrQw_FSQ3X6KpTO7A3_94xelotn-YP5frx_sd8ti51rpdK0jHDu05zJXArsJ4Sao3QljNjBOGYYNVR02SkNtOmVUYIahQxbdPYqqX1GH07pj3E8LO3kOQ29DE3D7IidVVRwvPAJ2qjdlY634UUld470HLGWJ2XwTHLVHmBypPZqHbB287l8Bk_ucDnY-ze6YuC72eCzCT7O21UDyDPwdv_wLYH5y3kC9zmJcGRv9SIjgEg2k4eYv6Z-EcSLAcvyMELcvCCHLyQBV-Pgi2kEE80bQRtKCdvmxiGint4L98r_Ri9Jg</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Petersen, Niels Christian</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>JQ2</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0002-0002-2264</orcidid></search><sort><creationdate>20180701</creationdate><title>Directional Distance Functions in DEA with Optimal Endogenous Directions</title><author>Petersen, Niels Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c565t-1f5d6ffc6a70b70c914ed7ce65dd716010af4d86ff3d98bad774da1db88e2b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Combinatorial analysis</topic><topic>cost efficiency</topic><topic>Data envelopment analysis</topic><topic>directional distance function</topic><topic>Efficiency</topic><topic>efficiency indicator</topic><topic>Equivalence</topic><topic>Euclidean distance</topic><topic>Euclidean geometry</topic><topic>Indicators</topic><topic>Mathematical optimization</topic><topic>METHODS</topic><topic>Operations research</topic><topic>Optimization</topic><topic>Pricing</topic><topic>profit efficiency</topic><topic>revenue efficiency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petersen, Niels Christian</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petersen, Niels Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Directional Distance Functions in DEA with Optimal Endogenous Directions</atitle><jtitle>Operations research</jtitle><date>2018-07-01</date><risdate>2018</risdate><volume>66</volume><issue>4</issue><spage>1068</spage><epage>1085</epage><pages>1068-1085</pages><issn>0030-364X</issn><eissn>1526-5463</eissn><abstract>This paper is concerned with optimal directions in the directional distance function in data envelopment analysis. It is shown that the vector pointing in the direction that minimizes the Euclidean distance between the input–output vector ( X o , Y o ) and the efficient frontier, the input isoquant reflecting output Y o , or the output isoquant reflecting input X o is optimal, because the corresponding vector of virtual multipliers defines the relative prices that maximize profit, cost, or revenue efficiency. The associated efficiency indicator is a value measure of technical efficiency in difference form with the Euclidean distance between ( X o , Y o ) and the efficient frontier, the Y o input isoquant, or the X o output isoquant as an equivalent directional distance quantity indicator. A linear combinatorial optimization program for computing the relevant value indicators of technical efficiency in multiplier space or the equivalent quantity indicators in terms of the relevant Euclidean distances is developed. A nonlinear and nonconvex optimization model for an estimation of the relevant value indicator of efficiency in multiplier space is also developed. Preliminary computational results are reported.</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/opre.2017.1711</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-0002-2264</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0030-364X
ispartof Operations research, 2018-07, Vol.66 (4), p.1068-1085
issn 0030-364X
1526-5463
language eng
recordid cdi_gale_infotracmisc_A553003605
source Informs; EBSCOhost Business Source Complete; Jstor Complete Legacy
subjects Algebra
Analysis
Combinatorial analysis
cost efficiency
Data envelopment analysis
directional distance function
Efficiency
efficiency indicator
Equivalence
Euclidean distance
Euclidean geometry
Indicators
Mathematical optimization
METHODS
Operations research
Optimization
Pricing
profit efficiency
revenue efficiency
title Directional Distance Functions in DEA with Optimal Endogenous Directions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A16%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Directional%20Distance%20Functions%20in%20DEA%20with%20Optimal%20Endogenous%20Directions&rft.jtitle=Operations%20research&rft.au=Petersen,%20Niels%20Christian&rft.date=2018-07-01&rft.volume=66&rft.issue=4&rft.spage=1068&rft.epage=1085&rft.pages=1068-1085&rft.issn=0030-364X&rft.eissn=1526-5463&rft_id=info:doi/10.1287/opre.2017.1711&rft_dat=%3Cgale_proqu%3EA553003605%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2132241646&rft_id=info:pmid/&rft_galeid=A553003605&rft_jstor_id=48748461&rfr_iscdi=true