Directional Distance Functions in DEA with Optimal Endogenous Directions
This paper is concerned with optimal directions in the directional distance function in data envelopment analysis. It is shown that the vector pointing in the direction that minimizes the Euclidean distance between the input–output vector ( X o , Y o ) and the efficient frontier, the input isoquant...
Gespeichert in:
Veröffentlicht in: | Operations research 2018-07, Vol.66 (4), p.1068-1085 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1085 |
---|---|
container_issue | 4 |
container_start_page | 1068 |
container_title | Operations research |
container_volume | 66 |
creator | Petersen, Niels Christian |
description | This paper is concerned with optimal directions in the directional distance function in data envelopment analysis. It is shown that the vector pointing in the direction that minimizes the Euclidean distance between the input–output vector (
X
o
,
Y
o
) and the efficient frontier, the input isoquant reflecting output
Y
o
, or the output isoquant reflecting input
X
o
is optimal, because the corresponding vector of virtual multipliers defines the relative prices that maximize profit, cost, or revenue efficiency. The associated efficiency indicator is a value measure of technical efficiency in difference form with the Euclidean distance between (
X
o
,
Y
o
) and the efficient frontier, the
Y
o
input isoquant, or the
X
o
output isoquant as an equivalent directional distance quantity indicator. A linear combinatorial optimization program for computing the relevant value indicators of technical efficiency in multiplier space or the equivalent quantity indicators in terms of the relevant Euclidean distances is developed. A nonlinear and nonconvex optimization model for an estimation of the relevant value indicator of efficiency in multiplier space is also developed. Preliminary computational results are reported. |
doi_str_mv | 10.1287/opre.2017.1711 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_gale_infotracmisc_A553003605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A553003605</galeid><jstor_id>48748461</jstor_id><sourcerecordid>A553003605</sourcerecordid><originalsourceid>FETCH-LOGICAL-c565t-1f5d6ffc6a70b70c914ed7ce65dd716010af4d86ff3d98bad774da1db88e2b43</originalsourceid><addsrcrecordid>eNqFkktrGzEUhUVpoK6TbXeFgUJXGUea0WO8NH4kBUM2WWQnNJLGkbElV1dD238fTV2cGgxBIMHlO_elg9AXgiekasRdOEQ7qTAREyII-YBGhFW8ZJTXH9EI4xqXNafPn9BngC3GeMo4G6GHhYtWJxe82hULB0l5bYtV7__GoHC-WCxnxS-XXorHQ3L7jC29CRvrQw_FSQ3X6KpTO7A3_94xelotn-YP5frx_sd8ti51rpdK0jHDu05zJXArsJ4Sao3QljNjBOGYYNVR02SkNtOmVUYIahQxbdPYqqX1GH07pj3E8LO3kOQ29DE3D7IidVVRwvPAJ2qjdlY634UUld470HLGWJ2XwTHLVHmBypPZqHbB287l8Bk_ucDnY-ze6YuC72eCzCT7O21UDyDPwdv_wLYH5y3kC9zmJcGRv9SIjgEg2k4eYv6Z-EcSLAcvyMELcvCCHLyQBV-Pgi2kEE80bQRtKCdvmxiGint4L98r_Ri9Jg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132241646</pqid></control><display><type>article</type><title>Directional Distance Functions in DEA with Optimal Endogenous Directions</title><source>Informs</source><source>EBSCOhost Business Source Complete</source><source>Jstor Complete Legacy</source><creator>Petersen, Niels Christian</creator><creatorcontrib>Petersen, Niels Christian</creatorcontrib><description>This paper is concerned with optimal directions in the directional distance function in data envelopment analysis. It is shown that the vector pointing in the direction that minimizes the Euclidean distance between the input–output vector (
X
o
,
Y
o
) and the efficient frontier, the input isoquant reflecting output
Y
o
, or the output isoquant reflecting input
X
o
is optimal, because the corresponding vector of virtual multipliers defines the relative prices that maximize profit, cost, or revenue efficiency. The associated efficiency indicator is a value measure of technical efficiency in difference form with the Euclidean distance between (
X
o
,
Y
o
) and the efficient frontier, the
Y
o
input isoquant, or the
X
o
output isoquant as an equivalent directional distance quantity indicator. A linear combinatorial optimization program for computing the relevant value indicators of technical efficiency in multiplier space or the equivalent quantity indicators in terms of the relevant Euclidean distances is developed. A nonlinear and nonconvex optimization model for an estimation of the relevant value indicator of efficiency in multiplier space is also developed. Preliminary computational results are reported.</description><identifier>ISSN: 0030-364X</identifier><identifier>EISSN: 1526-5463</identifier><identifier>DOI: 10.1287/opre.2017.1711</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>Algebra ; Analysis ; Combinatorial analysis ; cost efficiency ; Data envelopment analysis ; directional distance function ; Efficiency ; efficiency indicator ; Equivalence ; Euclidean distance ; Euclidean geometry ; Indicators ; Mathematical optimization ; METHODS ; Operations research ; Optimization ; Pricing ; profit efficiency ; revenue efficiency</subject><ispartof>Operations research, 2018-07, Vol.66 (4), p.1068-1085</ispartof><rights>2018 INFORMS</rights><rights>COPYRIGHT 2018 Institute for Operations Research and the Management Sciences</rights><rights>Copyright Institute for Operations Research and the Management Sciences Jul/Aug 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c565t-1f5d6ffc6a70b70c914ed7ce65dd716010af4d86ff3d98bad774da1db88e2b43</citedby><cites>FETCH-LOGICAL-c565t-1f5d6ffc6a70b70c914ed7ce65dd716010af4d86ff3d98bad774da1db88e2b43</cites><orcidid>0000-0002-0002-2264</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48748461$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/opre.2017.1711$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,777,781,800,3679,27905,27906,57998,58231,62595</link.rule.ids></links><search><creatorcontrib>Petersen, Niels Christian</creatorcontrib><title>Directional Distance Functions in DEA with Optimal Endogenous Directions</title><title>Operations research</title><description>This paper is concerned with optimal directions in the directional distance function in data envelopment analysis. It is shown that the vector pointing in the direction that minimizes the Euclidean distance between the input–output vector (
X
o
,
Y
o
) and the efficient frontier, the input isoquant reflecting output
Y
o
, or the output isoquant reflecting input
X
o
is optimal, because the corresponding vector of virtual multipliers defines the relative prices that maximize profit, cost, or revenue efficiency. The associated efficiency indicator is a value measure of technical efficiency in difference form with the Euclidean distance between (
X
o
,
Y
o
) and the efficient frontier, the
Y
o
input isoquant, or the
X
o
output isoquant as an equivalent directional distance quantity indicator. A linear combinatorial optimization program for computing the relevant value indicators of technical efficiency in multiplier space or the equivalent quantity indicators in terms of the relevant Euclidean distances is developed. A nonlinear and nonconvex optimization model for an estimation of the relevant value indicator of efficiency in multiplier space is also developed. Preliminary computational results are reported.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Combinatorial analysis</subject><subject>cost efficiency</subject><subject>Data envelopment analysis</subject><subject>directional distance function</subject><subject>Efficiency</subject><subject>efficiency indicator</subject><subject>Equivalence</subject><subject>Euclidean distance</subject><subject>Euclidean geometry</subject><subject>Indicators</subject><subject>Mathematical optimization</subject><subject>METHODS</subject><subject>Operations research</subject><subject>Optimization</subject><subject>Pricing</subject><subject>profit efficiency</subject><subject>revenue efficiency</subject><issn>0030-364X</issn><issn>1526-5463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNqFkktrGzEUhUVpoK6TbXeFgUJXGUea0WO8NH4kBUM2WWQnNJLGkbElV1dD238fTV2cGgxBIMHlO_elg9AXgiekasRdOEQ7qTAREyII-YBGhFW8ZJTXH9EI4xqXNafPn9BngC3GeMo4G6GHhYtWJxe82hULB0l5bYtV7__GoHC-WCxnxS-XXorHQ3L7jC29CRvrQw_FSQ3X6KpTO7A3_94xelotn-YP5frx_sd8ti51rpdK0jHDu05zJXArsJ4Sao3QljNjBOGYYNVR02SkNtOmVUYIahQxbdPYqqX1GH07pj3E8LO3kOQ29DE3D7IidVVRwvPAJ2qjdlY634UUld470HLGWJ2XwTHLVHmBypPZqHbB287l8Bk_ucDnY-ze6YuC72eCzCT7O21UDyDPwdv_wLYH5y3kC9zmJcGRv9SIjgEg2k4eYv6Z-EcSLAcvyMELcvCCHLyQBV-Pgi2kEE80bQRtKCdvmxiGint4L98r_Ri9Jg</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Petersen, Niels Christian</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>JQ2</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0002-0002-2264</orcidid></search><sort><creationdate>20180701</creationdate><title>Directional Distance Functions in DEA with Optimal Endogenous Directions</title><author>Petersen, Niels Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c565t-1f5d6ffc6a70b70c914ed7ce65dd716010af4d86ff3d98bad774da1db88e2b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Combinatorial analysis</topic><topic>cost efficiency</topic><topic>Data envelopment analysis</topic><topic>directional distance function</topic><topic>Efficiency</topic><topic>efficiency indicator</topic><topic>Equivalence</topic><topic>Euclidean distance</topic><topic>Euclidean geometry</topic><topic>Indicators</topic><topic>Mathematical optimization</topic><topic>METHODS</topic><topic>Operations research</topic><topic>Optimization</topic><topic>Pricing</topic><topic>profit efficiency</topic><topic>revenue efficiency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petersen, Niels Christian</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>Operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petersen, Niels Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Directional Distance Functions in DEA with Optimal Endogenous Directions</atitle><jtitle>Operations research</jtitle><date>2018-07-01</date><risdate>2018</risdate><volume>66</volume><issue>4</issue><spage>1068</spage><epage>1085</epage><pages>1068-1085</pages><issn>0030-364X</issn><eissn>1526-5463</eissn><abstract>This paper is concerned with optimal directions in the directional distance function in data envelopment analysis. It is shown that the vector pointing in the direction that minimizes the Euclidean distance between the input–output vector (
X
o
,
Y
o
) and the efficient frontier, the input isoquant reflecting output
Y
o
, or the output isoquant reflecting input
X
o
is optimal, because the corresponding vector of virtual multipliers defines the relative prices that maximize profit, cost, or revenue efficiency. The associated efficiency indicator is a value measure of technical efficiency in difference form with the Euclidean distance between (
X
o
,
Y
o
) and the efficient frontier, the
Y
o
input isoquant, or the
X
o
output isoquant as an equivalent directional distance quantity indicator. A linear combinatorial optimization program for computing the relevant value indicators of technical efficiency in multiplier space or the equivalent quantity indicators in terms of the relevant Euclidean distances is developed. A nonlinear and nonconvex optimization model for an estimation of the relevant value indicator of efficiency in multiplier space is also developed. Preliminary computational results are reported.</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/opre.2017.1711</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-0002-2264</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0030-364X |
ispartof | Operations research, 2018-07, Vol.66 (4), p.1068-1085 |
issn | 0030-364X 1526-5463 |
language | eng |
recordid | cdi_gale_infotracmisc_A553003605 |
source | Informs; EBSCOhost Business Source Complete; Jstor Complete Legacy |
subjects | Algebra Analysis Combinatorial analysis cost efficiency Data envelopment analysis directional distance function Efficiency efficiency indicator Equivalence Euclidean distance Euclidean geometry Indicators Mathematical optimization METHODS Operations research Optimization Pricing profit efficiency revenue efficiency |
title | Directional Distance Functions in DEA with Optimal Endogenous Directions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A16%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Directional%20Distance%20Functions%20in%20DEA%20with%20Optimal%20Endogenous%20Directions&rft.jtitle=Operations%20research&rft.au=Petersen,%20Niels%20Christian&rft.date=2018-07-01&rft.volume=66&rft.issue=4&rft.spage=1068&rft.epage=1085&rft.pages=1068-1085&rft.issn=0030-364X&rft.eissn=1526-5463&rft_id=info:doi/10.1287/opre.2017.1711&rft_dat=%3Cgale_proqu%3EA553003605%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2132241646&rft_id=info:pmid/&rft_galeid=A553003605&rft_jstor_id=48748461&rfr_iscdi=true |