A New Unbiased Stochastic Derivative Estimator for Discontinuous Sample Performances with Structural Parameters

In this paper, we propose a new unbiased stochastic derivative estimator in a framework that can handle discontinuous sample performances with structural parameters. This work extends the three most popular unbiased stochastic derivative estimators: (1) infinitesimal perturbation analysis (IPA), (2)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Operations research 2018-03, Vol.66 (2), p.487-499
Hauptverfasser: Peng, Yijie, Fu, Michael C., Hu, Jian-Qiang, Heidergott, Bernd
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 499
container_issue 2
container_start_page 487
container_title Operations research
container_volume 66
creator Peng, Yijie
Fu, Michael C.
Hu, Jian-Qiang
Heidergott, Bernd
description In this paper, we propose a new unbiased stochastic derivative estimator in a framework that can handle discontinuous sample performances with structural parameters. This work extends the three most popular unbiased stochastic derivative estimators: (1) infinitesimal perturbation analysis (IPA), (2) the likelihood ratio (LR) method, and (3) the weak derivative method, to a setting where they did not previously apply. Examples in probability constraints, control charts, and financial derivatives demonstrate the broad applicability of the proposed framework. The new estimator preserves the single-run efficiency of the classic IPA-LR estimators in applications, which is substantiated by numerical experiments. The online appendix is available at https://doi.org/10.1287/opre.2017.1674 .
doi_str_mv 10.1287/opre.2017.1674
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_gale_infotracmisc_A534633675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A534633675</galeid><jstor_id>48748258</jstor_id><sourcerecordid>A534633675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c605t-82389ca50ad5d1334b38c55649480cd4d98c003a2b4508659e3dc6ec1f8bb7b93</originalsourceid><addsrcrecordid>eNqFkl1rFDEUhgdRcK3eeicEBK86azL5mMzl0tYPKFqoBe9CJnNmN8vOZM3JtPrvzbBiXViQkAROnvck5-QtiteMLlml6_dhH2FZUVYvmarFk2LBZKVKKRR_Wiwo5bTkSnx_XrxA3FJKG6nkoggr8gUeyN3YeovQkdsU3MZi8o5cQvT3Nvl7IFc5MNgUIunzvPTowpj8OIUJya0d9jsgNxDz2WBHB0gefNrkVHFyaYp2R25stAMkiPiyeNbbHcKrP_tZcffh6tvFp_L668fPF6vr0ikqU6krrhtnJbWd7BjnouXaSalEIzR1nega7XJJtmqFpFrJBnjnFDjW67at24afFW8Pefcx_JgAk9mGKY75SlMxzioqKy0fqbXdgfFjH1K0bsj1mZXkuXNc1TNVnqDWMEKuLYzQ-xw-4pcn-Dw6GLw7KXh3JJi7Cz_T2k6I5hg8_wdsJ_QjYF7QrzcJD_yph7gYECP0Zh_zP8ZfhlEze8bMnjGzZ8zsmSx4cxBsMX_2X1roWuhK6sdOzEXFAf-X7zehm8vj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2131205285</pqid></control><display><type>article</type><title>A New Unbiased Stochastic Derivative Estimator for Discontinuous Sample Performances with Structural Parameters</title><source>INFORMS PubsOnLine</source><source>EBSCOhost Business Source Complete</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Peng, Yijie ; Fu, Michael C. ; Hu, Jian-Qiang ; Heidergott, Bernd</creator><creatorcontrib>Peng, Yijie ; Fu, Michael C. ; Hu, Jian-Qiang ; Heidergott, Bernd</creatorcontrib><description>In this paper, we propose a new unbiased stochastic derivative estimator in a framework that can handle discontinuous sample performances with structural parameters. This work extends the three most popular unbiased stochastic derivative estimators: (1) infinitesimal perturbation analysis (IPA), (2) the likelihood ratio (LR) method, and (3) the weak derivative method, to a setting where they did not previously apply. Examples in probability constraints, control charts, and financial derivatives demonstrate the broad applicability of the proposed framework. The new estimator preserves the single-run efficiency of the classic IPA-LR estimators in applications, which is substantiated by numerical experiments. The online appendix is available at https://doi.org/10.1287/opre.2017.1674 .</description><identifier>ISSN: 0030-364X</identifier><identifier>EISSN: 1526-5463</identifier><identifier>DOI: 10.1287/opre.2017.1674</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>Analysis ; Control charts ; Control systems ; discontinuous sample performance ; Estimation theory ; Estimators ; Learning models (Stochastic processes) ; Likelihood ratio ; METHODS ; Multivariable control systems ; Operations research ; Parameters ; perturbation analysis ; Perturbation methods ; simulation ; Stochastic control theory ; stochastic derivative estimation ; Stochastic models ; weak derivative</subject><ispartof>Operations research, 2018-03, Vol.66 (2), p.487-499</ispartof><rights>2018 INFORMS</rights><rights>COPYRIGHT 2018 Institute for Operations Research and the Management Sciences</rights><rights>Copyright Institute for Operations Research and the Management Sciences Mar/Apr 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c605t-82389ca50ad5d1334b38c55649480cd4d98c003a2b4508659e3dc6ec1f8bb7b93</citedby><cites>FETCH-LOGICAL-c605t-82389ca50ad5d1334b38c55649480cd4d98c003a2b4508659e3dc6ec1f8bb7b93</cites><orcidid>0000-0003-2584-8131</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48748258$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/opre.2017.1674$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>315,781,785,804,3693,27929,27930,58022,58255,62621</link.rule.ids></links><search><creatorcontrib>Peng, Yijie</creatorcontrib><creatorcontrib>Fu, Michael C.</creatorcontrib><creatorcontrib>Hu, Jian-Qiang</creatorcontrib><creatorcontrib>Heidergott, Bernd</creatorcontrib><title>A New Unbiased Stochastic Derivative Estimator for Discontinuous Sample Performances with Structural Parameters</title><title>Operations research</title><description>In this paper, we propose a new unbiased stochastic derivative estimator in a framework that can handle discontinuous sample performances with structural parameters. This work extends the three most popular unbiased stochastic derivative estimators: (1) infinitesimal perturbation analysis (IPA), (2) the likelihood ratio (LR) method, and (3) the weak derivative method, to a setting where they did not previously apply. Examples in probability constraints, control charts, and financial derivatives demonstrate the broad applicability of the proposed framework. The new estimator preserves the single-run efficiency of the classic IPA-LR estimators in applications, which is substantiated by numerical experiments. The online appendix is available at https://doi.org/10.1287/opre.2017.1674 .</description><subject>Analysis</subject><subject>Control charts</subject><subject>Control systems</subject><subject>discontinuous sample performance</subject><subject>Estimation theory</subject><subject>Estimators</subject><subject>Learning models (Stochastic processes)</subject><subject>Likelihood ratio</subject><subject>METHODS</subject><subject>Multivariable control systems</subject><subject>Operations research</subject><subject>Parameters</subject><subject>perturbation analysis</subject><subject>Perturbation methods</subject><subject>simulation</subject><subject>Stochastic control theory</subject><subject>stochastic derivative estimation</subject><subject>Stochastic models</subject><subject>weak derivative</subject><issn>0030-364X</issn><issn>1526-5463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNqFkl1rFDEUhgdRcK3eeicEBK86azL5mMzl0tYPKFqoBe9CJnNmN8vOZM3JtPrvzbBiXViQkAROnvck5-QtiteMLlml6_dhH2FZUVYvmarFk2LBZKVKKRR_Wiwo5bTkSnx_XrxA3FJKG6nkoggr8gUeyN3YeovQkdsU3MZi8o5cQvT3Nvl7IFc5MNgUIunzvPTowpj8OIUJya0d9jsgNxDz2WBHB0gefNrkVHFyaYp2R25stAMkiPiyeNbbHcKrP_tZcffh6tvFp_L668fPF6vr0ikqU6krrhtnJbWd7BjnouXaSalEIzR1nega7XJJtmqFpFrJBnjnFDjW67at24afFW8Pefcx_JgAk9mGKY75SlMxzioqKy0fqbXdgfFjH1K0bsj1mZXkuXNc1TNVnqDWMEKuLYzQ-xw-4pcn-Dw6GLw7KXh3JJi7Cz_T2k6I5hg8_wdsJ_QjYF7QrzcJD_yph7gYECP0Zh_zP8ZfhlEze8bMnjGzZ8zsmSx4cxBsMX_2X1roWuhK6sdOzEXFAf-X7zehm8vj</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Peng, Yijie</creator><creator>Fu, Michael C.</creator><creator>Hu, Jian-Qiang</creator><creator>Heidergott, Bernd</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>JQ2</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0003-2584-8131</orcidid></search><sort><creationdate>20180301</creationdate><title>A New Unbiased Stochastic Derivative Estimator for Discontinuous Sample Performances with Structural Parameters</title><author>Peng, Yijie ; Fu, Michael C. ; Hu, Jian-Qiang ; Heidergott, Bernd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c605t-82389ca50ad5d1334b38c55649480cd4d98c003a2b4508659e3dc6ec1f8bb7b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analysis</topic><topic>Control charts</topic><topic>Control systems</topic><topic>discontinuous sample performance</topic><topic>Estimation theory</topic><topic>Estimators</topic><topic>Learning models (Stochastic processes)</topic><topic>Likelihood ratio</topic><topic>METHODS</topic><topic>Multivariable control systems</topic><topic>Operations research</topic><topic>Parameters</topic><topic>perturbation analysis</topic><topic>Perturbation methods</topic><topic>simulation</topic><topic>Stochastic control theory</topic><topic>stochastic derivative estimation</topic><topic>Stochastic models</topic><topic>weak derivative</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Yijie</creatorcontrib><creatorcontrib>Fu, Michael C.</creatorcontrib><creatorcontrib>Hu, Jian-Qiang</creatorcontrib><creatorcontrib>Heidergott, Bernd</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Yijie</au><au>Fu, Michael C.</au><au>Hu, Jian-Qiang</au><au>Heidergott, Bernd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Unbiased Stochastic Derivative Estimator for Discontinuous Sample Performances with Structural Parameters</atitle><jtitle>Operations research</jtitle><date>2018-03-01</date><risdate>2018</risdate><volume>66</volume><issue>2</issue><spage>487</spage><epage>499</epage><pages>487-499</pages><issn>0030-364X</issn><eissn>1526-5463</eissn><abstract>In this paper, we propose a new unbiased stochastic derivative estimator in a framework that can handle discontinuous sample performances with structural parameters. This work extends the three most popular unbiased stochastic derivative estimators: (1) infinitesimal perturbation analysis (IPA), (2) the likelihood ratio (LR) method, and (3) the weak derivative method, to a setting where they did not previously apply. Examples in probability constraints, control charts, and financial derivatives demonstrate the broad applicability of the proposed framework. The new estimator preserves the single-run efficiency of the classic IPA-LR estimators in applications, which is substantiated by numerical experiments. The online appendix is available at https://doi.org/10.1287/opre.2017.1674 .</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/opre.2017.1674</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2584-8131</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0030-364X
ispartof Operations research, 2018-03, Vol.66 (2), p.487-499
issn 0030-364X
1526-5463
language eng
recordid cdi_gale_infotracmisc_A534633675
source INFORMS PubsOnLine; EBSCOhost Business Source Complete; JSTOR Archive Collection A-Z Listing
subjects Analysis
Control charts
Control systems
discontinuous sample performance
Estimation theory
Estimators
Learning models (Stochastic processes)
Likelihood ratio
METHODS
Multivariable control systems
Operations research
Parameters
perturbation analysis
Perturbation methods
simulation
Stochastic control theory
stochastic derivative estimation
Stochastic models
weak derivative
title A New Unbiased Stochastic Derivative Estimator for Discontinuous Sample Performances with Structural Parameters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T03%3A42%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Unbiased%20Stochastic%20Derivative%20Estimator%20for%20Discontinuous%20Sample%20Performances%20with%20Structural%20Parameters&rft.jtitle=Operations%20research&rft.au=Peng,%20Yijie&rft.date=2018-03-01&rft.volume=66&rft.issue=2&rft.spage=487&rft.epage=499&rft.pages=487-499&rft.issn=0030-364X&rft.eissn=1526-5463&rft_id=info:doi/10.1287/opre.2017.1674&rft_dat=%3Cgale_proqu%3EA534633675%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2131205285&rft_id=info:pmid/&rft_galeid=A534633675&rft_jstor_id=48748258&rfr_iscdi=true