In vivoassessment of the permeability of the blood-brain barrier and blood-retinal barrier to fluorescent indoline derivatives in zebrafish
Background Successful delivery of compounds to the brain and retina is a challenge in the development of therapeutic drugs and imaging agents. This challenge arises because internalization of compounds into the brain and retina is restricted by the blood-brain barrier (BBB) and blood-retinal barrier...
Gespeichert in:
Veröffentlicht in: | BMC neuroscience 2012-08, Vol.13 (1), Article 101 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | BMC neuroscience |
container_volume | 13 |
creator | Watanabe, Kohei Nishimura, Yuhei Nomoto, Tsuyoshi Umemoto, Noriko Zhang, Zi Zhang, Beibei Kuroyanagi, Junya Shimada, Yasuhito Shintou, Taichi Okano, Mie Miyazaki, Takeshi Imamura, Takeshi Tanaka, Toshio |
description | Background Successful delivery of compounds to the brain and retina is a challenge in the development of therapeutic drugs and imaging agents. This challenge arises because internalization of compounds into the brain and retina is restricted by the blood-brain barrier (BBB) and blood-retinal barrier (BRB), respectively. Simple and reliable in vivo assays are necessary to identify compounds that can easily cross the BBB and BRB. Methods We developed six fluorescent indoline derivatives (IDs) and examined their ability to cross the BBB and BRB in zebrafish by in vivo fluorescence imaging. These fluorescent IDs were administered to live zebrafish by immersing the zebrafish larvae at 7-8 days post fertilization in medium containing the ID, or by intracardiac injection. We also examined the effect of multidrug resistance proteins (MRPs) on the permeability of the BBB and BRB to the ID using MK571, a selective inhibitor of MRPs. Results The permeability of these barriers to fluorescent IDs administered by simple immersion was comparable to when administered by intracardiac injection. Thus, this finding supports the validity of drug administration by simple immersion for the assessment of BBB and BRB permeability to fluorescent IDs. Using this zebrafish model, we demonstrated that the length of the methylene chain in these fluorescent IDs significantly affected their ability to cross the BBB and BRB via MRPs. Conclusions We demonstrated that in vivo assessment of the permeability of the BBB and BRB to fluorescent IDs could be simply and reliably performed using zebrafish. The structure of fluorescent IDs can be flexibly modified and, thus, the permeability of the BBB and BRB to a large number of IDs can be assessed using this zebrafish-based assay. The large amount of data acquired might be useful for in silico analysis to elucidate the precise mechanisms underlying the interactions between chemical structure and the efflux transporters at the BBB and BRB. In turn, understanding these mechanisms may lead to the efficient design of compounds targeting the brain and retina. Keywords: Blood-brain barrier, Blood-retinal barrier, Zebrafish, Fluorescent indoline derivatives, Transporters |
doi_str_mv | 10.1186/1471-2202-13-101 |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracmisc_A534146834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A534146834</galeid><sourcerecordid>A534146834</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2631-1796a847e3cf706b099f125d1bdd50e96e16907f8e0a6542c96c4f51734c6a153</originalsourceid><addsrcrecordid>eNptkU9LxDAQxYMouK7ePQY8d800adoel8U_Cwte9FzSdOJG2mRJamH9Cn5pW3YVBZnDDL95710eIdfAFgCFvAWRQ5KmLE2AJ8DghMx-0Omv-5xcxPjGGOSFSGfkc-3oYAevYsQYO3Q99Yb2W6Q7DB2q2ra233-zuvW-SeqgrKO1CsFioMo1Rx6wt061P5_eU9O--4BRT7nWNb61DmmDwQ6qtwPGEdIPHAONjdtLcmZUG_HquOfk5f7uefWYbJ4e1qvlJtGp5JBAXkpViBy5NjmTNStLA2nWQN00GcNSIsiS5aZApmQmUl1KLUwGORdaKsj4nNwccl9Vi5V1xvdB6c5GXS0zLkDIgotRtfhHNU6DndXeobEj_2NgB4MOPsaAptoF26mwr4BVU0fVVEI1lVABHyHwL1y3hQg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>In vivoassessment of the permeability of the blood-brain barrier and blood-retinal barrier to fluorescent indoline derivatives in zebrafish</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>Watanabe, Kohei ; Nishimura, Yuhei ; Nomoto, Tsuyoshi ; Umemoto, Noriko ; Zhang, Zi ; Zhang, Beibei ; Kuroyanagi, Junya ; Shimada, Yasuhito ; Shintou, Taichi ; Okano, Mie ; Miyazaki, Takeshi ; Imamura, Takeshi ; Tanaka, Toshio</creator><creatorcontrib>Watanabe, Kohei ; Nishimura, Yuhei ; Nomoto, Tsuyoshi ; Umemoto, Noriko ; Zhang, Zi ; Zhang, Beibei ; Kuroyanagi, Junya ; Shimada, Yasuhito ; Shintou, Taichi ; Okano, Mie ; Miyazaki, Takeshi ; Imamura, Takeshi ; Tanaka, Toshio</creatorcontrib><description>Background Successful delivery of compounds to the brain and retina is a challenge in the development of therapeutic drugs and imaging agents. This challenge arises because internalization of compounds into the brain and retina is restricted by the blood-brain barrier (BBB) and blood-retinal barrier (BRB), respectively. Simple and reliable in vivo assays are necessary to identify compounds that can easily cross the BBB and BRB. Methods We developed six fluorescent indoline derivatives (IDs) and examined their ability to cross the BBB and BRB in zebrafish by in vivo fluorescence imaging. These fluorescent IDs were administered to live zebrafish by immersing the zebrafish larvae at 7-8 days post fertilization in medium containing the ID, or by intracardiac injection. We also examined the effect of multidrug resistance proteins (MRPs) on the permeability of the BBB and BRB to the ID using MK571, a selective inhibitor of MRPs. Results The permeability of these barriers to fluorescent IDs administered by simple immersion was comparable to when administered by intracardiac injection. Thus, this finding supports the validity of drug administration by simple immersion for the assessment of BBB and BRB permeability to fluorescent IDs. Using this zebrafish model, we demonstrated that the length of the methylene chain in these fluorescent IDs significantly affected their ability to cross the BBB and BRB via MRPs. Conclusions We demonstrated that in vivo assessment of the permeability of the BBB and BRB to fluorescent IDs could be simply and reliably performed using zebrafish. The structure of fluorescent IDs can be flexibly modified and, thus, the permeability of the BBB and BRB to a large number of IDs can be assessed using this zebrafish-based assay. The large amount of data acquired might be useful for in silico analysis to elucidate the precise mechanisms underlying the interactions between chemical structure and the efflux transporters at the BBB and BRB. In turn, understanding these mechanisms may lead to the efficient design of compounds targeting the brain and retina. Keywords: Blood-brain barrier, Blood-retinal barrier, Zebrafish, Fluorescent indoline derivatives, Transporters</description><identifier>ISSN: 1471-2202</identifier><identifier>EISSN: 1471-2202</identifier><identifier>DOI: 10.1186/1471-2202-13-101</identifier><language>eng</language><publisher>BioMed Central Ltd</publisher><subject>Blood-brain barrier ; Drug resistance in microorganisms ; Health aspects ; Permeability ; Physiological aspects ; Proteins ; Zebra fish</subject><ispartof>BMC neuroscience, 2012-08, Vol.13 (1), Article 101</ispartof><rights>COPYRIGHT 2012 BioMed Central Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2631-1796a847e3cf706b099f125d1bdd50e96e16907f8e0a6542c96c4f51734c6a153</citedby><cites>FETCH-LOGICAL-c2631-1796a847e3cf706b099f125d1bdd50e96e16907f8e0a6542c96c4f51734c6a153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27923,27924</link.rule.ids></links><search><creatorcontrib>Watanabe, Kohei</creatorcontrib><creatorcontrib>Nishimura, Yuhei</creatorcontrib><creatorcontrib>Nomoto, Tsuyoshi</creatorcontrib><creatorcontrib>Umemoto, Noriko</creatorcontrib><creatorcontrib>Zhang, Zi</creatorcontrib><creatorcontrib>Zhang, Beibei</creatorcontrib><creatorcontrib>Kuroyanagi, Junya</creatorcontrib><creatorcontrib>Shimada, Yasuhito</creatorcontrib><creatorcontrib>Shintou, Taichi</creatorcontrib><creatorcontrib>Okano, Mie</creatorcontrib><creatorcontrib>Miyazaki, Takeshi</creatorcontrib><creatorcontrib>Imamura, Takeshi</creatorcontrib><creatorcontrib>Tanaka, Toshio</creatorcontrib><title>In vivoassessment of the permeability of the blood-brain barrier and blood-retinal barrier to fluorescent indoline derivatives in zebrafish</title><title>BMC neuroscience</title><description>Background Successful delivery of compounds to the brain and retina is a challenge in the development of therapeutic drugs and imaging agents. This challenge arises because internalization of compounds into the brain and retina is restricted by the blood-brain barrier (BBB) and blood-retinal barrier (BRB), respectively. Simple and reliable in vivo assays are necessary to identify compounds that can easily cross the BBB and BRB. Methods We developed six fluorescent indoline derivatives (IDs) and examined their ability to cross the BBB and BRB in zebrafish by in vivo fluorescence imaging. These fluorescent IDs were administered to live zebrafish by immersing the zebrafish larvae at 7-8 days post fertilization in medium containing the ID, or by intracardiac injection. We also examined the effect of multidrug resistance proteins (MRPs) on the permeability of the BBB and BRB to the ID using MK571, a selective inhibitor of MRPs. Results The permeability of these barriers to fluorescent IDs administered by simple immersion was comparable to when administered by intracardiac injection. Thus, this finding supports the validity of drug administration by simple immersion for the assessment of BBB and BRB permeability to fluorescent IDs. Using this zebrafish model, we demonstrated that the length of the methylene chain in these fluorescent IDs significantly affected their ability to cross the BBB and BRB via MRPs. Conclusions We demonstrated that in vivo assessment of the permeability of the BBB and BRB to fluorescent IDs could be simply and reliably performed using zebrafish. The structure of fluorescent IDs can be flexibly modified and, thus, the permeability of the BBB and BRB to a large number of IDs can be assessed using this zebrafish-based assay. The large amount of data acquired might be useful for in silico analysis to elucidate the precise mechanisms underlying the interactions between chemical structure and the efflux transporters at the BBB and BRB. In turn, understanding these mechanisms may lead to the efficient design of compounds targeting the brain and retina. Keywords: Blood-brain barrier, Blood-retinal barrier, Zebrafish, Fluorescent indoline derivatives, Transporters</description><subject>Blood-brain barrier</subject><subject>Drug resistance in microorganisms</subject><subject>Health aspects</subject><subject>Permeability</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>Zebra fish</subject><issn>1471-2202</issn><issn>1471-2202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNptkU9LxDAQxYMouK7ePQY8d800adoel8U_Cwte9FzSdOJG2mRJamH9Cn5pW3YVBZnDDL95710eIdfAFgCFvAWRQ5KmLE2AJ8DghMx-0Omv-5xcxPjGGOSFSGfkc-3oYAevYsQYO3Q99Yb2W6Q7DB2q2ra233-zuvW-SeqgrKO1CsFioMo1Rx6wt061P5_eU9O--4BRT7nWNb61DmmDwQ6qtwPGEdIPHAONjdtLcmZUG_HquOfk5f7uefWYbJ4e1qvlJtGp5JBAXkpViBy5NjmTNStLA2nWQN00GcNSIsiS5aZApmQmUl1KLUwGORdaKsj4nNwccl9Vi5V1xvdB6c5GXS0zLkDIgotRtfhHNU6DndXeobEj_2NgB4MOPsaAptoF26mwr4BVU0fVVEI1lVABHyHwL1y3hQg</recordid><startdate>20120816</startdate><enddate>20120816</enddate><creator>Watanabe, Kohei</creator><creator>Nishimura, Yuhei</creator><creator>Nomoto, Tsuyoshi</creator><creator>Umemoto, Noriko</creator><creator>Zhang, Zi</creator><creator>Zhang, Beibei</creator><creator>Kuroyanagi, Junya</creator><creator>Shimada, Yasuhito</creator><creator>Shintou, Taichi</creator><creator>Okano, Mie</creator><creator>Miyazaki, Takeshi</creator><creator>Imamura, Takeshi</creator><creator>Tanaka, Toshio</creator><general>BioMed Central Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120816</creationdate><title>In vivoassessment of the permeability of the blood-brain barrier and blood-retinal barrier to fluorescent indoline derivatives in zebrafish</title><author>Watanabe, Kohei ; Nishimura, Yuhei ; Nomoto, Tsuyoshi ; Umemoto, Noriko ; Zhang, Zi ; Zhang, Beibei ; Kuroyanagi, Junya ; Shimada, Yasuhito ; Shintou, Taichi ; Okano, Mie ; Miyazaki, Takeshi ; Imamura, Takeshi ; Tanaka, Toshio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2631-1796a847e3cf706b099f125d1bdd50e96e16907f8e0a6542c96c4f51734c6a153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Blood-brain barrier</topic><topic>Drug resistance in microorganisms</topic><topic>Health aspects</topic><topic>Permeability</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>Zebra fish</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Watanabe, Kohei</creatorcontrib><creatorcontrib>Nishimura, Yuhei</creatorcontrib><creatorcontrib>Nomoto, Tsuyoshi</creatorcontrib><creatorcontrib>Umemoto, Noriko</creatorcontrib><creatorcontrib>Zhang, Zi</creatorcontrib><creatorcontrib>Zhang, Beibei</creatorcontrib><creatorcontrib>Kuroyanagi, Junya</creatorcontrib><creatorcontrib>Shimada, Yasuhito</creatorcontrib><creatorcontrib>Shintou, Taichi</creatorcontrib><creatorcontrib>Okano, Mie</creatorcontrib><creatorcontrib>Miyazaki, Takeshi</creatorcontrib><creatorcontrib>Imamura, Takeshi</creatorcontrib><creatorcontrib>Tanaka, Toshio</creatorcontrib><collection>CrossRef</collection><jtitle>BMC neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Watanabe, Kohei</au><au>Nishimura, Yuhei</au><au>Nomoto, Tsuyoshi</au><au>Umemoto, Noriko</au><au>Zhang, Zi</au><au>Zhang, Beibei</au><au>Kuroyanagi, Junya</au><au>Shimada, Yasuhito</au><au>Shintou, Taichi</au><au>Okano, Mie</au><au>Miyazaki, Takeshi</au><au>Imamura, Takeshi</au><au>Tanaka, Toshio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vivoassessment of the permeability of the blood-brain barrier and blood-retinal barrier to fluorescent indoline derivatives in zebrafish</atitle><jtitle>BMC neuroscience</jtitle><date>2012-08-16</date><risdate>2012</risdate><volume>13</volume><issue>1</issue><artnum>101</artnum><issn>1471-2202</issn><eissn>1471-2202</eissn><abstract>Background Successful delivery of compounds to the brain and retina is a challenge in the development of therapeutic drugs and imaging agents. This challenge arises because internalization of compounds into the brain and retina is restricted by the blood-brain barrier (BBB) and blood-retinal barrier (BRB), respectively. Simple and reliable in vivo assays are necessary to identify compounds that can easily cross the BBB and BRB. Methods We developed six fluorescent indoline derivatives (IDs) and examined their ability to cross the BBB and BRB in zebrafish by in vivo fluorescence imaging. These fluorescent IDs were administered to live zebrafish by immersing the zebrafish larvae at 7-8 days post fertilization in medium containing the ID, or by intracardiac injection. We also examined the effect of multidrug resistance proteins (MRPs) on the permeability of the BBB and BRB to the ID using MK571, a selective inhibitor of MRPs. Results The permeability of these barriers to fluorescent IDs administered by simple immersion was comparable to when administered by intracardiac injection. Thus, this finding supports the validity of drug administration by simple immersion for the assessment of BBB and BRB permeability to fluorescent IDs. Using this zebrafish model, we demonstrated that the length of the methylene chain in these fluorescent IDs significantly affected their ability to cross the BBB and BRB via MRPs. Conclusions We demonstrated that in vivo assessment of the permeability of the BBB and BRB to fluorescent IDs could be simply and reliably performed using zebrafish. The structure of fluorescent IDs can be flexibly modified and, thus, the permeability of the BBB and BRB to a large number of IDs can be assessed using this zebrafish-based assay. The large amount of data acquired might be useful for in silico analysis to elucidate the precise mechanisms underlying the interactions between chemical structure and the efflux transporters at the BBB and BRB. In turn, understanding these mechanisms may lead to the efficient design of compounds targeting the brain and retina. Keywords: Blood-brain barrier, Blood-retinal barrier, Zebrafish, Fluorescent indoline derivatives, Transporters</abstract><pub>BioMed Central Ltd</pub><doi>10.1186/1471-2202-13-101</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-2202 |
ispartof | BMC neuroscience, 2012-08, Vol.13 (1), Article 101 |
issn | 1471-2202 1471-2202 |
language | eng |
recordid | cdi_gale_infotracmisc_A534146834 |
source | DOAJ Directory of Open Access Journals; PubMed Central Open Access; Springer Nature OA Free Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; SpringerLink Journals - AutoHoldings |
subjects | Blood-brain barrier Drug resistance in microorganisms Health aspects Permeability Physiological aspects Proteins Zebra fish |
title | In vivoassessment of the permeability of the blood-brain barrier and blood-retinal barrier to fluorescent indoline derivatives in zebrafish |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A46%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vivoassessment%20of%20the%20permeability%20of%20the%20blood-brain%20barrier%20and%20blood-retinal%20barrier%20to%20fluorescent%20indoline%20derivatives%20in%20zebrafish&rft.jtitle=BMC%20neuroscience&rft.au=Watanabe,%20Kohei&rft.date=2012-08-16&rft.volume=13&rft.issue=1&rft.artnum=101&rft.issn=1471-2202&rft.eissn=1471-2202&rft_id=info:doi/10.1186/1471-2202-13-101&rft_dat=%3Cgale_cross%3EA534146834%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A534146834&rfr_iscdi=true |