A generic [.sup.89]Zr labeling method to quantify the in vivo pharmacokinetics of liposomal nanoparticles with positron emission tomography

Liposomal nanoparticles are versatile drug delivery vehicles that show great promise in cancer therapy. In an effort to quantitatively measure their in vivo pharmacokinetics, we developed a highly efficient [.sup.89]Zr liposome-labeling method based on a rapid ligand exchange reaction between the me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of nanomedicine 2017-01, Vol.12, p.3281
Hauptverfasser: Li, Nan, Yu, Zilin, Pham, Truc Thuy, Blower, Philip J, Yan, Ran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 3281
container_title International journal of nanomedicine
container_volume 12
creator Li, Nan
Yu, Zilin
Pham, Truc Thuy
Blower, Philip J
Yan, Ran
description Liposomal nanoparticles are versatile drug delivery vehicles that show great promise in cancer therapy. In an effort to quantitatively measure their in vivo pharmacokinetics, we developed a highly efficient [.sup.89]Zr liposome-labeling method based on a rapid ligand exchange reaction between the membrane-permeable [[.sup.89]Zr(8-hydroxyquinolinate).sub.4] complex and the hydrophilic liposomal cavity-encapsulated deferoxamine (DFO). This novel [.sup.89]Zr-labeling strategy allowed us to prepare radiolabeled forms of a folic acid (FA)-decorated active targeting [.sup.89]Zr-FA-DFO-liposome, a thermosensitive [.sup.89]Zr-DFO-liposome, and a renal avid [.sup.89]Zr-PEG-DFO-liposome at room temperature with near-quantitative isolated radiochemical yields of 98%[+ or -]1% (n=6), 98%[+ or -]2% (n=5), and 97%[+ or -]1% (n=3), respectively. These [.sup.89]Zr-labeled liposomal nanoparticles showed remarkable stability in phosphate-buffered saline and serum at 37[degrees]C without leakage of radioactivity for 48 h. The uptake of [.sup.89]Zr-FA-DFO-liposome by the folate receptor-overexpressing KB cells was almost 15-fold higher than the [.sup.89]Zr-DFO-liposome in vitro. Positron emission tomography imaging and ex vivo biodistribution studies enabled us to observe the heterogeneous distribution of the [.sup.89]Zr-FA-DFO-liposome and [.sup.89]Zr-DFO-liposome in the KB tumor xenografts, the extensive kidney accumulation of the [.sup.89]Zr-FA-DFO-liposome and [.sup.89]Zr-PEG-DFO-liposome, and the different metabolic fate of the free and liposome-encapsulated [.sup.89]Zr-DFO. It also unveiled the poor resistance of all three liposomes against endothelial uptake resulting in their catabolism and high uptake of free [.sup.89]Zr in the skeleton. Thus, this technically simple [.sup.89]Zr-labeling method would find widespread use to guide the development and clinical applications of novel liposomal nanomedicines. Keywords: liposome, zirconium-89, PET, pharmacokinetics
doi_str_mv 10.2147/IJN.S34379
format Article
fullrecord <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracmisc_A532303013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A532303013</galeid><sourcerecordid>A532303013</sourcerecordid><originalsourceid>FETCH-LOGICAL-g673-91706c813eeccbcd12a03a1b8806ae827d77eb7790f133f39ecdb32c24760d303</originalsourceid><addsrcrecordid>eNptkL9OwzAQxj2ARCksPMFJzAl23MbJWFX8KapgoBMIVY5zTgyJHWK3qM_AS2MJBgZ0w53u-92nT0fIBaNpxmbianX_kD7xGRflEZkwJooko4yfkFPv3yidiyIvJ-RrAQ1aHI2Cl9TvhrQoX59H6GSFnbEN9BhaV0Nw8LGTNhh9gNAiGAt7s3cwtHLspXLvxmIwyoPT0JnBedfLDqy0bpBjFDr08GlCC1EyYXQWsDfemzgE17tmlEN7OCPHWnYez3_7lGxurjfLu2T9eLtaLtZJkwuelEzQXBWMIypVqZplknLJqqKgucQiE7UQWAlRUs0417xEVVc8U9lM5LTmlE_J5Y9tIzvcGqtdGKWKcdR2MedZJOKbIpX-Q8WqY3LlLGoT938OvgHr4XQL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A generic [.sup.89]Zr labeling method to quantify the in vivo pharmacokinetics of liposomal nanoparticles with positron emission tomography</title><source>Taylor &amp; Francis Open Access</source><source>DOVE Medical Press Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Li, Nan ; Yu, Zilin ; Pham, Truc Thuy ; Blower, Philip J ; Yan, Ran</creator><creatorcontrib>Li, Nan ; Yu, Zilin ; Pham, Truc Thuy ; Blower, Philip J ; Yan, Ran</creatorcontrib><description>Liposomal nanoparticles are versatile drug delivery vehicles that show great promise in cancer therapy. In an effort to quantitatively measure their in vivo pharmacokinetics, we developed a highly efficient [.sup.89]Zr liposome-labeling method based on a rapid ligand exchange reaction between the membrane-permeable [[.sup.89]Zr(8-hydroxyquinolinate).sub.4] complex and the hydrophilic liposomal cavity-encapsulated deferoxamine (DFO). This novel [.sup.89]Zr-labeling strategy allowed us to prepare radiolabeled forms of a folic acid (FA)-decorated active targeting [.sup.89]Zr-FA-DFO-liposome, a thermosensitive [.sup.89]Zr-DFO-liposome, and a renal avid [.sup.89]Zr-PEG-DFO-liposome at room temperature with near-quantitative isolated radiochemical yields of 98%[+ or -]1% (n=6), 98%[+ or -]2% (n=5), and 97%[+ or -]1% (n=3), respectively. These [.sup.89]Zr-labeled liposomal nanoparticles showed remarkable stability in phosphate-buffered saline and serum at 37[degrees]C without leakage of radioactivity for 48 h. The uptake of [.sup.89]Zr-FA-DFO-liposome by the folate receptor-overexpressing KB cells was almost 15-fold higher than the [.sup.89]Zr-DFO-liposome in vitro. Positron emission tomography imaging and ex vivo biodistribution studies enabled us to observe the heterogeneous distribution of the [.sup.89]Zr-FA-DFO-liposome and [.sup.89]Zr-DFO-liposome in the KB tumor xenografts, the extensive kidney accumulation of the [.sup.89]Zr-FA-DFO-liposome and [.sup.89]Zr-PEG-DFO-liposome, and the different metabolic fate of the free and liposome-encapsulated [.sup.89]Zr-DFO. It also unveiled the poor resistance of all three liposomes against endothelial uptake resulting in their catabolism and high uptake of free [.sup.89]Zr in the skeleton. Thus, this technically simple [.sup.89]Zr-labeling method would find widespread use to guide the development and clinical applications of novel liposomal nanomedicines. Keywords: liposome, zirconium-89, PET, pharmacokinetics</description><identifier>ISSN: 1178-2013</identifier><identifier>DOI: 10.2147/IJN.S34379</identifier><language>eng</language><publisher>Dove Medical Press Limited</publisher><subject>Drug delivery systems ; Health aspects ; Methods ; Nanoparticles ; Phosphates ; Physiological aspects ; Positron emission tomography ; Properties</subject><ispartof>International journal of nanomedicine, 2017-01, Vol.12, p.3281</ispartof><rights>COPYRIGHT 2017 Dove Medical Press Limited</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Li, Nan</creatorcontrib><creatorcontrib>Yu, Zilin</creatorcontrib><creatorcontrib>Pham, Truc Thuy</creatorcontrib><creatorcontrib>Blower, Philip J</creatorcontrib><creatorcontrib>Yan, Ran</creatorcontrib><title>A generic [.sup.89]Zr labeling method to quantify the in vivo pharmacokinetics of liposomal nanoparticles with positron emission tomography</title><title>International journal of nanomedicine</title><description>Liposomal nanoparticles are versatile drug delivery vehicles that show great promise in cancer therapy. In an effort to quantitatively measure their in vivo pharmacokinetics, we developed a highly efficient [.sup.89]Zr liposome-labeling method based on a rapid ligand exchange reaction between the membrane-permeable [[.sup.89]Zr(8-hydroxyquinolinate).sub.4] complex and the hydrophilic liposomal cavity-encapsulated deferoxamine (DFO). This novel [.sup.89]Zr-labeling strategy allowed us to prepare radiolabeled forms of a folic acid (FA)-decorated active targeting [.sup.89]Zr-FA-DFO-liposome, a thermosensitive [.sup.89]Zr-DFO-liposome, and a renal avid [.sup.89]Zr-PEG-DFO-liposome at room temperature with near-quantitative isolated radiochemical yields of 98%[+ or -]1% (n=6), 98%[+ or -]2% (n=5), and 97%[+ or -]1% (n=3), respectively. These [.sup.89]Zr-labeled liposomal nanoparticles showed remarkable stability in phosphate-buffered saline and serum at 37[degrees]C without leakage of radioactivity for 48 h. The uptake of [.sup.89]Zr-FA-DFO-liposome by the folate receptor-overexpressing KB cells was almost 15-fold higher than the [.sup.89]Zr-DFO-liposome in vitro. Positron emission tomography imaging and ex vivo biodistribution studies enabled us to observe the heterogeneous distribution of the [.sup.89]Zr-FA-DFO-liposome and [.sup.89]Zr-DFO-liposome in the KB tumor xenografts, the extensive kidney accumulation of the [.sup.89]Zr-FA-DFO-liposome and [.sup.89]Zr-PEG-DFO-liposome, and the different metabolic fate of the free and liposome-encapsulated [.sup.89]Zr-DFO. It also unveiled the poor resistance of all three liposomes against endothelial uptake resulting in their catabolism and high uptake of free [.sup.89]Zr in the skeleton. Thus, this technically simple [.sup.89]Zr-labeling method would find widespread use to guide the development and clinical applications of novel liposomal nanomedicines. Keywords: liposome, zirconium-89, PET, pharmacokinetics</description><subject>Drug delivery systems</subject><subject>Health aspects</subject><subject>Methods</subject><subject>Nanoparticles</subject><subject>Phosphates</subject><subject>Physiological aspects</subject><subject>Positron emission tomography</subject><subject>Properties</subject><issn>1178-2013</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNptkL9OwzAQxj2ARCksPMFJzAl23MbJWFX8KapgoBMIVY5zTgyJHWK3qM_AS2MJBgZ0w53u-92nT0fIBaNpxmbianX_kD7xGRflEZkwJooko4yfkFPv3yidiyIvJ-RrAQ1aHI2Cl9TvhrQoX59H6GSFnbEN9BhaV0Nw8LGTNhh9gNAiGAt7s3cwtHLspXLvxmIwyoPT0JnBedfLDqy0bpBjFDr08GlCC1EyYXQWsDfemzgE17tmlEN7OCPHWnYez3_7lGxurjfLu2T9eLtaLtZJkwuelEzQXBWMIypVqZplknLJqqKgucQiE7UQWAlRUs0417xEVVc8U9lM5LTmlE_J5Y9tIzvcGqtdGKWKcdR2MedZJOKbIpX-Q8WqY3LlLGoT938OvgHr4XQL</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Li, Nan</creator><creator>Yu, Zilin</creator><creator>Pham, Truc Thuy</creator><creator>Blower, Philip J</creator><creator>Yan, Ran</creator><general>Dove Medical Press Limited</general><scope/></search><sort><creationdate>20170101</creationdate><title>A generic [.sup.89]Zr labeling method to quantify the in vivo pharmacokinetics of liposomal nanoparticles with positron emission tomography</title><author>Li, Nan ; Yu, Zilin ; Pham, Truc Thuy ; Blower, Philip J ; Yan, Ran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g673-91706c813eeccbcd12a03a1b8806ae827d77eb7790f133f39ecdb32c24760d303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Drug delivery systems</topic><topic>Health aspects</topic><topic>Methods</topic><topic>Nanoparticles</topic><topic>Phosphates</topic><topic>Physiological aspects</topic><topic>Positron emission tomography</topic><topic>Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Nan</creatorcontrib><creatorcontrib>Yu, Zilin</creatorcontrib><creatorcontrib>Pham, Truc Thuy</creatorcontrib><creatorcontrib>Blower, Philip J</creatorcontrib><creatorcontrib>Yan, Ran</creatorcontrib><jtitle>International journal of nanomedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Nan</au><au>Yu, Zilin</au><au>Pham, Truc Thuy</au><au>Blower, Philip J</au><au>Yan, Ran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A generic [.sup.89]Zr labeling method to quantify the in vivo pharmacokinetics of liposomal nanoparticles with positron emission tomography</atitle><jtitle>International journal of nanomedicine</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>12</volume><spage>3281</spage><pages>3281-</pages><issn>1178-2013</issn><abstract>Liposomal nanoparticles are versatile drug delivery vehicles that show great promise in cancer therapy. In an effort to quantitatively measure their in vivo pharmacokinetics, we developed a highly efficient [.sup.89]Zr liposome-labeling method based on a rapid ligand exchange reaction between the membrane-permeable [[.sup.89]Zr(8-hydroxyquinolinate).sub.4] complex and the hydrophilic liposomal cavity-encapsulated deferoxamine (DFO). This novel [.sup.89]Zr-labeling strategy allowed us to prepare radiolabeled forms of a folic acid (FA)-decorated active targeting [.sup.89]Zr-FA-DFO-liposome, a thermosensitive [.sup.89]Zr-DFO-liposome, and a renal avid [.sup.89]Zr-PEG-DFO-liposome at room temperature with near-quantitative isolated radiochemical yields of 98%[+ or -]1% (n=6), 98%[+ or -]2% (n=5), and 97%[+ or -]1% (n=3), respectively. These [.sup.89]Zr-labeled liposomal nanoparticles showed remarkable stability in phosphate-buffered saline and serum at 37[degrees]C without leakage of radioactivity for 48 h. The uptake of [.sup.89]Zr-FA-DFO-liposome by the folate receptor-overexpressing KB cells was almost 15-fold higher than the [.sup.89]Zr-DFO-liposome in vitro. Positron emission tomography imaging and ex vivo biodistribution studies enabled us to observe the heterogeneous distribution of the [.sup.89]Zr-FA-DFO-liposome and [.sup.89]Zr-DFO-liposome in the KB tumor xenografts, the extensive kidney accumulation of the [.sup.89]Zr-FA-DFO-liposome and [.sup.89]Zr-PEG-DFO-liposome, and the different metabolic fate of the free and liposome-encapsulated [.sup.89]Zr-DFO. It also unveiled the poor resistance of all three liposomes against endothelial uptake resulting in their catabolism and high uptake of free [.sup.89]Zr in the skeleton. Thus, this technically simple [.sup.89]Zr-labeling method would find widespread use to guide the development and clinical applications of novel liposomal nanomedicines. Keywords: liposome, zirconium-89, PET, pharmacokinetics</abstract><pub>Dove Medical Press Limited</pub><doi>10.2147/IJN.S34379</doi></addata></record>
fulltext fulltext
identifier ISSN: 1178-2013
ispartof International journal of nanomedicine, 2017-01, Vol.12, p.3281
issn 1178-2013
language eng
recordid cdi_gale_infotracmisc_A532303013
source Taylor & Francis Open Access; DOVE Medical Press Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
subjects Drug delivery systems
Health aspects
Methods
Nanoparticles
Phosphates
Physiological aspects
Positron emission tomography
Properties
title A generic [.sup.89]Zr labeling method to quantify the in vivo pharmacokinetics of liposomal nanoparticles with positron emission tomography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A32%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20generic%20%5B.sup.89%5DZr%20labeling%20method%20to%20quantify%20the%20in%20vivo%20pharmacokinetics%20of%20liposomal%20nanoparticles%20with%20positron%20emission%20tomography&rft.jtitle=International%20journal%20of%20nanomedicine&rft.au=Li,%20Nan&rft.date=2017-01-01&rft.volume=12&rft.spage=3281&rft.pages=3281-&rft.issn=1178-2013&rft_id=info:doi/10.2147/IJN.S34379&rft_dat=%3Cgale%3EA532303013%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A532303013&rfr_iscdi=true