Optimization of geometric parameters in a welded joint through response surface methodology

•Experimental desing for a GMAW welding process to maximize the amount of information.•Response surface-based modelling (RSM) to quantify response variables of interest.•Statistical model selection to obtain the most informative models.•Statistical model checking for definitive models to ensure infe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Construction & building materials 2017-11, Vol.154, p.105-114
Hauptverfasser: Martinez-Conesa, Eusebio J., Egea, Jose A., Miguel, Valentin, Toledo, Carlos, Meseguer-Valdenebro, Jose L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 114
container_issue
container_start_page 105
container_title Construction & building materials
container_volume 154
creator Martinez-Conesa, Eusebio J.
Egea, Jose A.
Miguel, Valentin
Toledo, Carlos
Meseguer-Valdenebro, Jose L.
description •Experimental desing for a GMAW welding process to maximize the amount of information.•Response surface-based modelling (RSM) to quantify response variables of interest.•Statistical model selection to obtain the most informative models.•Statistical model checking for definitive models to ensure inference capabilities.•Multiobjective optimization to identify the Pareto front of optimal solutions. This work makes use of experimental design and response surface methodology to model Gas Metal Arc Welding processes. The correlations among three key geometric parameters, ie., penetration, bead width and overthickness, and four technological variables that define the welding process are quantified. Based on experimental data and using model selection techniques, a mathematical model has been deduced for each of the response variables herein presented. Using these models, a multiobjective optimization is carried out to find the space of optimal solutions (i.e., the Pareto front). After a preliminary study of the relationships between independent and response variables, regression models are built. These models capture the data variability reasonably well (e.g., around 70% of the variability). These models are the basis to perform the multiobjective optimization using the ε-constraint approach. Results reveal that the conditions which favour a good balance between maximum penetration and minimum bead width and overthickness, involve a high value for gas flow rate, low values for electrode feed rate and voltage, and an intermediate value for the electrode position. This permits the authors to define the welding conditions that lead to an optimum joint geometry and then to guarantee its properties.
doi_str_mv 10.1016/j.conbuildmat.2017.07.163
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracmisc_A513926689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A513926689</galeid><els_id>S0950061817315064</els_id><sourcerecordid>A513926689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-bd0547192f43d6924ce49643c0fed029b4c231a535909ba596feb0a6f49d43903</originalsourceid><addsrcrecordid>eNqNkU9rHCEYh6U00G2a72DptTN9nT_OegxLmxQCuaSnHsTR11mXGV3UaUk_fQ2bQwJ7CIK-vDzP7-CPkM8MagaMfzvUOvhxdbNZVK4bYEMNQ814-45s2HYQFfQNf082IHqogLPtB_IxpQMA8IY3G_L7_pjd4v6p7IKnwdIJw4I5Ok2PKqoyYkzUearoX5wNGnoIzmea9zGs055GTMfgE9K0Rqs00mLsgwlzmB4_kQur5oRXz-8l-fXj-8Putrq7v_m5u76rdM9YrkYDfTcw0diuNVw0ncZO8K7VYNFAI8ZONy1TfdsLEKPqBbc4guK2E6ZrBbSX5Mspd1IzSudtyFHpxSUtr3vWiobzrShUdYaa0GNUc_BoXVm_4uszfDkGF6fPCl9fCOOanMdUruSmfU6TWlN6jYsTrmNIKaKVx-gWFR8lA_nUrTzIF93Kp24lDLJ0W9zdycXyrX8cRpm0Q6_RuIg6SxPcG1L-AxifsyU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimization of geometric parameters in a welded joint through response surface methodology</title><source>Elsevier ScienceDirect Journals</source><creator>Martinez-Conesa, Eusebio J. ; Egea, Jose A. ; Miguel, Valentin ; Toledo, Carlos ; Meseguer-Valdenebro, Jose L.</creator><creatorcontrib>Martinez-Conesa, Eusebio J. ; Egea, Jose A. ; Miguel, Valentin ; Toledo, Carlos ; Meseguer-Valdenebro, Jose L.</creatorcontrib><description>•Experimental desing for a GMAW welding process to maximize the amount of information.•Response surface-based modelling (RSM) to quantify response variables of interest.•Statistical model selection to obtain the most informative models.•Statistical model checking for definitive models to ensure inference capabilities.•Multiobjective optimization to identify the Pareto front of optimal solutions. This work makes use of experimental design and response surface methodology to model Gas Metal Arc Welding processes. The correlations among three key geometric parameters, ie., penetration, bead width and overthickness, and four technological variables that define the welding process are quantified. Based on experimental data and using model selection techniques, a mathematical model has been deduced for each of the response variables herein presented. Using these models, a multiobjective optimization is carried out to find the space of optimal solutions (i.e., the Pareto front). After a preliminary study of the relationships between independent and response variables, regression models are built. These models capture the data variability reasonably well (e.g., around 70% of the variability). These models are the basis to perform the multiobjective optimization using the ε-constraint approach. Results reveal that the conditions which favour a good balance between maximum penetration and minimum bead width and overthickness, involve a high value for gas flow rate, low values for electrode feed rate and voltage, and an intermediate value for the electrode position. This permits the authors to define the welding conditions that lead to an optimum joint geometry and then to guarantee its properties.</description><identifier>ISSN: 0950-0618</identifier><identifier>EISSN: 1879-0526</identifier><identifier>DOI: 10.1016/j.conbuildmat.2017.07.163</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Analysis ; Geometric parameters ; Methods ; Multiobjective optimization ; Response surface methodology ; Welding ; Welding process</subject><ispartof>Construction &amp; building materials, 2017-11, Vol.154, p.105-114</ispartof><rights>2017 Elsevier Ltd</rights><rights>COPYRIGHT 2017 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-bd0547192f43d6924ce49643c0fed029b4c231a535909ba596feb0a6f49d43903</citedby><cites>FETCH-LOGICAL-c511t-bd0547192f43d6924ce49643c0fed029b4c231a535909ba596feb0a6f49d43903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0950061817315064$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Martinez-Conesa, Eusebio J.</creatorcontrib><creatorcontrib>Egea, Jose A.</creatorcontrib><creatorcontrib>Miguel, Valentin</creatorcontrib><creatorcontrib>Toledo, Carlos</creatorcontrib><creatorcontrib>Meseguer-Valdenebro, Jose L.</creatorcontrib><title>Optimization of geometric parameters in a welded joint through response surface methodology</title><title>Construction &amp; building materials</title><description>•Experimental desing for a GMAW welding process to maximize the amount of information.•Response surface-based modelling (RSM) to quantify response variables of interest.•Statistical model selection to obtain the most informative models.•Statistical model checking for definitive models to ensure inference capabilities.•Multiobjective optimization to identify the Pareto front of optimal solutions. This work makes use of experimental design and response surface methodology to model Gas Metal Arc Welding processes. The correlations among three key geometric parameters, ie., penetration, bead width and overthickness, and four technological variables that define the welding process are quantified. Based on experimental data and using model selection techniques, a mathematical model has been deduced for each of the response variables herein presented. Using these models, a multiobjective optimization is carried out to find the space of optimal solutions (i.e., the Pareto front). After a preliminary study of the relationships between independent and response variables, regression models are built. These models capture the data variability reasonably well (e.g., around 70% of the variability). These models are the basis to perform the multiobjective optimization using the ε-constraint approach. Results reveal that the conditions which favour a good balance between maximum penetration and minimum bead width and overthickness, involve a high value for gas flow rate, low values for electrode feed rate and voltage, and an intermediate value for the electrode position. This permits the authors to define the welding conditions that lead to an optimum joint geometry and then to guarantee its properties.</description><subject>Analysis</subject><subject>Geometric parameters</subject><subject>Methods</subject><subject>Multiobjective optimization</subject><subject>Response surface methodology</subject><subject>Welding</subject><subject>Welding process</subject><issn>0950-0618</issn><issn>1879-0526</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNqNkU9rHCEYh6U00G2a72DptTN9nT_OegxLmxQCuaSnHsTR11mXGV3UaUk_fQ2bQwJ7CIK-vDzP7-CPkM8MagaMfzvUOvhxdbNZVK4bYEMNQ814-45s2HYQFfQNf082IHqogLPtB_IxpQMA8IY3G_L7_pjd4v6p7IKnwdIJw4I5Ok2PKqoyYkzUearoX5wNGnoIzmea9zGs055GTMfgE9K0Rqs00mLsgwlzmB4_kQur5oRXz-8l-fXj-8Putrq7v_m5u76rdM9YrkYDfTcw0diuNVw0ncZO8K7VYNFAI8ZONy1TfdsLEKPqBbc4guK2E6ZrBbSX5Mspd1IzSudtyFHpxSUtr3vWiobzrShUdYaa0GNUc_BoXVm_4uszfDkGF6fPCl9fCOOanMdUruSmfU6TWlN6jYsTrmNIKaKVx-gWFR8lA_nUrTzIF93Kp24lDLJ0W9zdycXyrX8cRpm0Q6_RuIg6SxPcG1L-AxifsyU</recordid><startdate>20171115</startdate><enddate>20171115</enddate><creator>Martinez-Conesa, Eusebio J.</creator><creator>Egea, Jose A.</creator><creator>Miguel, Valentin</creator><creator>Toledo, Carlos</creator><creator>Meseguer-Valdenebro, Jose L.</creator><general>Elsevier Ltd</general><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope></search><sort><creationdate>20171115</creationdate><title>Optimization of geometric parameters in a welded joint through response surface methodology</title><author>Martinez-Conesa, Eusebio J. ; Egea, Jose A. ; Miguel, Valentin ; Toledo, Carlos ; Meseguer-Valdenebro, Jose L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-bd0547192f43d6924ce49643c0fed029b4c231a535909ba596feb0a6f49d43903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analysis</topic><topic>Geometric parameters</topic><topic>Methods</topic><topic>Multiobjective optimization</topic><topic>Response surface methodology</topic><topic>Welding</topic><topic>Welding process</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martinez-Conesa, Eusebio J.</creatorcontrib><creatorcontrib>Egea, Jose A.</creatorcontrib><creatorcontrib>Miguel, Valentin</creatorcontrib><creatorcontrib>Toledo, Carlos</creatorcontrib><creatorcontrib>Meseguer-Valdenebro, Jose L.</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><jtitle>Construction &amp; building materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martinez-Conesa, Eusebio J.</au><au>Egea, Jose A.</au><au>Miguel, Valentin</au><au>Toledo, Carlos</au><au>Meseguer-Valdenebro, Jose L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of geometric parameters in a welded joint through response surface methodology</atitle><jtitle>Construction &amp; building materials</jtitle><date>2017-11-15</date><risdate>2017</risdate><volume>154</volume><spage>105</spage><epage>114</epage><pages>105-114</pages><issn>0950-0618</issn><eissn>1879-0526</eissn><abstract>•Experimental desing for a GMAW welding process to maximize the amount of information.•Response surface-based modelling (RSM) to quantify response variables of interest.•Statistical model selection to obtain the most informative models.•Statistical model checking for definitive models to ensure inference capabilities.•Multiobjective optimization to identify the Pareto front of optimal solutions. This work makes use of experimental design and response surface methodology to model Gas Metal Arc Welding processes. The correlations among three key geometric parameters, ie., penetration, bead width and overthickness, and four technological variables that define the welding process are quantified. Based on experimental data and using model selection techniques, a mathematical model has been deduced for each of the response variables herein presented. Using these models, a multiobjective optimization is carried out to find the space of optimal solutions (i.e., the Pareto front). After a preliminary study of the relationships between independent and response variables, regression models are built. These models capture the data variability reasonably well (e.g., around 70% of the variability). These models are the basis to perform the multiobjective optimization using the ε-constraint approach. Results reveal that the conditions which favour a good balance between maximum penetration and minimum bead width and overthickness, involve a high value for gas flow rate, low values for electrode feed rate and voltage, and an intermediate value for the electrode position. This permits the authors to define the welding conditions that lead to an optimum joint geometry and then to guarantee its properties.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.conbuildmat.2017.07.163</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0950-0618
ispartof Construction & building materials, 2017-11, Vol.154, p.105-114
issn 0950-0618
1879-0526
language eng
recordid cdi_gale_infotracmisc_A513926689
source Elsevier ScienceDirect Journals
subjects Analysis
Geometric parameters
Methods
Multiobjective optimization
Response surface methodology
Welding
Welding process
title Optimization of geometric parameters in a welded joint through response surface methodology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T09%3A18%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20geometric%20parameters%20in%20a%20welded%20joint%20through%20response%20surface%20methodology&rft.jtitle=Construction%20&%20building%20materials&rft.au=Martinez-Conesa,%20Eusebio%20J.&rft.date=2017-11-15&rft.volume=154&rft.spage=105&rft.epage=114&rft.pages=105-114&rft.issn=0950-0618&rft.eissn=1879-0526&rft_id=info:doi/10.1016/j.conbuildmat.2017.07.163&rft_dat=%3Cgale_cross%3EA513926689%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A513926689&rft_els_id=S0950061817315064&rfr_iscdi=true