Mechanical Stress Activates Smad Pathway through PKC[delta] to Enhance Interleukin-11 Gene Transcription in Osteoblasts

Mechanical stress rapidly induces [DELTA]FosB expression in osteoblasts, which binds to interleukin (IL)-11 gene promoter to enhance IL-11 expression, and IL-11 enhances osteoblast differentiation. Because bone morphogenetic proteins (BMPs) also stimulate IL-11 expression in osteoblasts, there is a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2010-09, Vol.5 (9), p.e13090
Hauptverfasser: Kido, Shinsuke, Kuriwaka-Kido, Rika, Umino-Miyatani, Yuka, Endo, Itsuro, Inoue, Daisuke, Taniguchi, Hisaaki, Inoue, Yasumichi, Imamura, Takeshi, Matsumoto, Toshio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mechanical stress rapidly induces [DELTA]FosB expression in osteoblasts, which binds to interleukin (IL)-11 gene promoter to enhance IL-11 expression, and IL-11 enhances osteoblast differentiation. Because bone morphogenetic proteins (BMPs) also stimulate IL-11 expression in osteoblasts, there is a possibility that BMP-Smad signaling is involved in the enhancement of osteoblast differentiation by mechanical stress. The present study was undertaken to clarify whether mechanical stress affects BMP-Smad signaling, and if so, to elucidate the role of Smad signaling in mechanical stress-induced enhancement of IL-11 gene transcription. Mechanical loading by fluid shear stress (FSS) induced phosphorylation of BMP-specific receptor-regulated Smads (BR-Smads), Smad1/5, in murine primary osteoblasts (mPOBs). FSS rapidly phosphorylated Y311 of protein kinase C (PKC)[delta], and phosphorylated PKC[delta] interacted with BR-Smads to phosphorylate BR-Smads. Transfection of PKC[delta] siRNA or Y311F mutant PKC[delta] abrogated BR-Smads phosphorylation and suppressed IL-11 gene transcription enhanced by FSS. Activated BR-Smads bound to the Smad-binding element (SBE) of IL-11 gene promoter and formed complex with [DELTA]FosB/JunD heterodimer via binding to the C-terminal region of JunD. Site-directed mutagenesis in the SBE and the AP-1 site revealed that both SBE and AP-1 sites were required for full activation of IL-11 gene promoter by FSS. These results demonstrate that PKC[delta]-BR-Smads pathway plays an important role in the intracellular signaling in response to mechanical stress, and that a cross-talk between PKC[delta]-BR-Smads and [DELTA]FosB/JunD pathways synergistically stimulates IL-11 gene transcription in response to mechanical stress.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0013090