The use of multilayer perceptron artificial neural networks for the classification of ethanol samples by commercialization region/Utilizacao de Redes Neurais Artificiais Perceptron de Multiplas Camadas para classificacao de amostras de etanol com a regiao de comercializacao

Samples of automotive ethanol, marketed in the northern and eastern regions of the state of Parana, Brazil, underwent physical and chemical tests. Rates were assessed by Multilayer Perceptron (MLP) neural network for classification. For network training, two hundred epochs, a 0.05 learning rate and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta scientiarum. Technology 2016-04, Vol.38 (2)
Hauptverfasser: Romagnoli, Erica Signori, Silva, Livia Ramazzoti Chanan, Angilelli, Karina Gomes, Ferreira, Bruna Aparecida Denobi, Walkoff, Aline Regina, Borsato, Dionisio
Format: Artikel
Sprache:spa
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Acta scientiarum. Technology
container_volume 38
creator Romagnoli, Erica Signori
Silva, Livia Ramazzoti Chanan
Angilelli, Karina Gomes
Ferreira, Bruna Aparecida Denobi
Walkoff, Aline Regina
Borsato, Dionisio
description Samples of automotive ethanol, marketed in the northern and eastern regions of the state of Parana, Brazil, underwent physical and chemical tests. Rates were assessed by Multilayer Perceptron (MLP) neural network for classification. For network training, two hundred epochs, a 0.05 learning rate and a random subdivision of samples in three groups with 70 for training, 15 for test and 15% for validation were employed. Sixty networks were trained from three different initializations. Three networks, one at each start-up, were highlighted and the one with the best performance presented 8 neurons in the hidden layer, with 95 accuracy training, 96 in the test and 96% in validation. The most important variables in classifications, identified by the network, occurred in the following order: alcohol content, density, pH and electrical conductivity. Application of MLP segmented ethanol samples and identified the commercialization regions. Keywords: biofuel, backpropagation, hidden layer, training. Amostras de alcool etilico automotivo, comercializadas nas regioes Norte e Leste do Estado do Parana, foram submetidas a ensaios fisico-quimicos e os valores tabulados foram apresentados a rede neural do tipo Perceptron de multiplas camadas (MLP) para classificacao. Para o treinamento das redes foram utilizadas 200 epocas, uma taxa de aprendizagem de 0.05 e uma subdivisao das amostras, de forma aleatoria, em tres grupos sendo 70 para treinamento, 15 para teste e 15% para validacao. Foram treinadas 60 redes obtidas a partir de tres inicializacoes diferentes. Tres redes (uma de cada inicializacao) foram destacadas, e aquela com melhor desempenho apresentou oito neuronios na camada oculta com 95 de acerto no treinamento, 96 no teste e 96% na validacao. As variaveis mais importantes na classificacao, identificadas pela rede, seguiram a seguinte ordem: teor alcoolico, pH, massa especifica e condutividade eletrica. A aplicacao da rede MLP permitiu a segmentacao das amostras de alcool e, com isso, identificar as regioes de comercializacao. Palavras-chave:biocombustivel, retropropagacao, camada oculta, treinamento.
doi_str_mv 10.4025/actascitechnol.v28i2.27597
format Article
fullrecord <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracmisc_A456899719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A456899719</galeid><sourcerecordid>A456899719</sourcerecordid><originalsourceid>FETCH-LOGICAL-g679-fb340bf85007ca01e8d95d1f121bd81362219de14cca1a277607e4f6d391d99b3</originalsourceid><addsrcrecordid>eNptjk1PGzEQhhepSFDgwi-w2nMS2_vpYxS1FAlahMI5mrXHidvd9cp2QPTXM0ko5YB8GHv8fjxZ9kXwacFlOQOdIGqXUG8G300fZePkVNalqj9lp6Lh1USWVX6SfY7xN-eVVEKeHl0uN8i2EZm3rN92yXXwjIGNGDSOKfiBQUjOOu2gYwNuw36kJx_-RGZ9YIn8uoMYdyJIjhwUhWkDBMEi9GOHkbXPTPu-p1TKcX8PuoBrGrMHKqWVBs8Msns0pP-5a3KRzf-V0_3uPxPpbnewIxWzBfRgaI4Q4B3Kax70PqZA33THtIciEgb79oOE3m9g5DrPji10ES9e51m2_P5tufgxufl1db2Y30zWVa0mts0L3tqm5LzWwAU2RpVGWCFFaxqRV1IKZVAUWoMAWdcVr7GwlcmVMEq1-Vn29RC7hg5XbrCeMHXvol7Ni7JqlKqFItX0AxUdg73TfkDraP_O8AKP5qxD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The use of multilayer perceptron artificial neural networks for the classification of ethanol samples by commercialization region/Utilizacao de Redes Neurais Artificiais Perceptron de Multiplas Camadas para classificacao de amostras de etanol com a regiao de comercializacao</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Romagnoli, Erica Signori ; Silva, Livia Ramazzoti Chanan ; Angilelli, Karina Gomes ; Ferreira, Bruna Aparecida Denobi ; Walkoff, Aline Regina ; Borsato, Dionisio</creator><creatorcontrib>Romagnoli, Erica Signori ; Silva, Livia Ramazzoti Chanan ; Angilelli, Karina Gomes ; Ferreira, Bruna Aparecida Denobi ; Walkoff, Aline Regina ; Borsato, Dionisio</creatorcontrib><description>Samples of automotive ethanol, marketed in the northern and eastern regions of the state of Parana, Brazil, underwent physical and chemical tests. Rates were assessed by Multilayer Perceptron (MLP) neural network for classification. For network training, two hundred epochs, a 0.05 learning rate and a random subdivision of samples in three groups with 70 for training, 15 for test and 15% for validation were employed. Sixty networks were trained from three different initializations. Three networks, one at each start-up, were highlighted and the one with the best performance presented 8 neurons in the hidden layer, with 95 accuracy training, 96 in the test and 96% in validation. The most important variables in classifications, identified by the network, occurred in the following order: alcohol content, density, pH and electrical conductivity. Application of MLP segmented ethanol samples and identified the commercialization regions. Keywords: biofuel, backpropagation, hidden layer, training. Amostras de alcool etilico automotivo, comercializadas nas regioes Norte e Leste do Estado do Parana, foram submetidas a ensaios fisico-quimicos e os valores tabulados foram apresentados a rede neural do tipo Perceptron de multiplas camadas (MLP) para classificacao. Para o treinamento das redes foram utilizadas 200 epocas, uma taxa de aprendizagem de 0.05 e uma subdivisao das amostras, de forma aleatoria, em tres grupos sendo 70 para treinamento, 15 para teste e 15% para validacao. Foram treinadas 60 redes obtidas a partir de tres inicializacoes diferentes. Tres redes (uma de cada inicializacao) foram destacadas, e aquela com melhor desempenho apresentou oito neuronios na camada oculta com 95 de acerto no treinamento, 96 no teste e 96% na validacao. As variaveis mais importantes na classificacao, identificadas pela rede, seguiram a seguinte ordem: teor alcoolico, pH, massa especifica e condutividade eletrica. A aplicacao da rede MLP permitiu a segmentacao das amostras de alcool e, com isso, identificar as regioes de comercializacao. Palavras-chave:biocombustivel, retropropagacao, camada oculta, treinamento.</description><identifier>ISSN: 1806-2563</identifier><identifier>DOI: 10.4025/actascitechnol.v28i2.27597</identifier><language>spa</language><publisher>Universidade Estadual de Maringa</publisher><ispartof>Acta scientiarum. Technology, 2016-04, Vol.38 (2)</ispartof><rights>COPYRIGHT 2016 Universidade Estadual de Maringa</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27922,27923</link.rule.ids></links><search><creatorcontrib>Romagnoli, Erica Signori</creatorcontrib><creatorcontrib>Silva, Livia Ramazzoti Chanan</creatorcontrib><creatorcontrib>Angilelli, Karina Gomes</creatorcontrib><creatorcontrib>Ferreira, Bruna Aparecida Denobi</creatorcontrib><creatorcontrib>Walkoff, Aline Regina</creatorcontrib><creatorcontrib>Borsato, Dionisio</creatorcontrib><title>The use of multilayer perceptron artificial neural networks for the classification of ethanol samples by commercialization region/Utilizacao de Redes Neurais Artificiais Perceptron de Multiplas Camadas para classificacao de amostras de etanol com a regiao de comercializacao</title><title>Acta scientiarum. Technology</title><description>Samples of automotive ethanol, marketed in the northern and eastern regions of the state of Parana, Brazil, underwent physical and chemical tests. Rates were assessed by Multilayer Perceptron (MLP) neural network for classification. For network training, two hundred epochs, a 0.05 learning rate and a random subdivision of samples in three groups with 70 for training, 15 for test and 15% for validation were employed. Sixty networks were trained from three different initializations. Three networks, one at each start-up, were highlighted and the one with the best performance presented 8 neurons in the hidden layer, with 95 accuracy training, 96 in the test and 96% in validation. The most important variables in classifications, identified by the network, occurred in the following order: alcohol content, density, pH and electrical conductivity. Application of MLP segmented ethanol samples and identified the commercialization regions. Keywords: biofuel, backpropagation, hidden layer, training. Amostras de alcool etilico automotivo, comercializadas nas regioes Norte e Leste do Estado do Parana, foram submetidas a ensaios fisico-quimicos e os valores tabulados foram apresentados a rede neural do tipo Perceptron de multiplas camadas (MLP) para classificacao. Para o treinamento das redes foram utilizadas 200 epocas, uma taxa de aprendizagem de 0.05 e uma subdivisao das amostras, de forma aleatoria, em tres grupos sendo 70 para treinamento, 15 para teste e 15% para validacao. Foram treinadas 60 redes obtidas a partir de tres inicializacoes diferentes. Tres redes (uma de cada inicializacao) foram destacadas, e aquela com melhor desempenho apresentou oito neuronios na camada oculta com 95 de acerto no treinamento, 96 no teste e 96% na validacao. As variaveis mais importantes na classificacao, identificadas pela rede, seguiram a seguinte ordem: teor alcoolico, pH, massa especifica e condutividade eletrica. A aplicacao da rede MLP permitiu a segmentacao das amostras de alcool e, com isso, identificar as regioes de comercializacao. Palavras-chave:biocombustivel, retropropagacao, camada oculta, treinamento.</description><issn>1806-2563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNptjk1PGzEQhhepSFDgwi-w2nMS2_vpYxS1FAlahMI5mrXHidvd9cp2QPTXM0ko5YB8GHv8fjxZ9kXwacFlOQOdIGqXUG8G300fZePkVNalqj9lp6Lh1USWVX6SfY7xN-eVVEKeHl0uN8i2EZm3rN92yXXwjIGNGDSOKfiBQUjOOu2gYwNuw36kJx_-RGZ9YIn8uoMYdyJIjhwUhWkDBMEi9GOHkbXPTPu-p1TKcX8PuoBrGrMHKqWVBs8Msns0pP-5a3KRzf-V0_3uPxPpbnewIxWzBfRgaI4Q4B3Kax70PqZA33THtIciEgb79oOE3m9g5DrPji10ES9e51m2_P5tufgxufl1db2Y30zWVa0mts0L3tqm5LzWwAU2RpVGWCFFaxqRV1IKZVAUWoMAWdcVr7GwlcmVMEq1-Vn29RC7hg5XbrCeMHXvol7Ni7JqlKqFItX0AxUdg73TfkDraP_O8AKP5qxD</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Romagnoli, Erica Signori</creator><creator>Silva, Livia Ramazzoti Chanan</creator><creator>Angilelli, Karina Gomes</creator><creator>Ferreira, Bruna Aparecida Denobi</creator><creator>Walkoff, Aline Regina</creator><creator>Borsato, Dionisio</creator><general>Universidade Estadual de Maringa</general><scope>INF</scope></search><sort><creationdate>20160401</creationdate><title>The use of multilayer perceptron artificial neural networks for the classification of ethanol samples by commercialization region/Utilizacao de Redes Neurais Artificiais Perceptron de Multiplas Camadas para classificacao de amostras de etanol com a regiao de comercializacao</title><author>Romagnoli, Erica Signori ; Silva, Livia Ramazzoti Chanan ; Angilelli, Karina Gomes ; Ferreira, Bruna Aparecida Denobi ; Walkoff, Aline Regina ; Borsato, Dionisio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g679-fb340bf85007ca01e8d95d1f121bd81362219de14cca1a277607e4f6d391d99b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>spa</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Romagnoli, Erica Signori</creatorcontrib><creatorcontrib>Silva, Livia Ramazzoti Chanan</creatorcontrib><creatorcontrib>Angilelli, Karina Gomes</creatorcontrib><creatorcontrib>Ferreira, Bruna Aparecida Denobi</creatorcontrib><creatorcontrib>Walkoff, Aline Regina</creatorcontrib><creatorcontrib>Borsato, Dionisio</creatorcontrib><collection>Gale OneFile: Informe Academico</collection><jtitle>Acta scientiarum. Technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Romagnoli, Erica Signori</au><au>Silva, Livia Ramazzoti Chanan</au><au>Angilelli, Karina Gomes</au><au>Ferreira, Bruna Aparecida Denobi</au><au>Walkoff, Aline Regina</au><au>Borsato, Dionisio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The use of multilayer perceptron artificial neural networks for the classification of ethanol samples by commercialization region/Utilizacao de Redes Neurais Artificiais Perceptron de Multiplas Camadas para classificacao de amostras de etanol com a regiao de comercializacao</atitle><jtitle>Acta scientiarum. Technology</jtitle><date>2016-04-01</date><risdate>2016</risdate><volume>38</volume><issue>2</issue><issn>1806-2563</issn><abstract>Samples of automotive ethanol, marketed in the northern and eastern regions of the state of Parana, Brazil, underwent physical and chemical tests. Rates were assessed by Multilayer Perceptron (MLP) neural network for classification. For network training, two hundred epochs, a 0.05 learning rate and a random subdivision of samples in three groups with 70 for training, 15 for test and 15% for validation were employed. Sixty networks were trained from three different initializations. Three networks, one at each start-up, were highlighted and the one with the best performance presented 8 neurons in the hidden layer, with 95 accuracy training, 96 in the test and 96% in validation. The most important variables in classifications, identified by the network, occurred in the following order: alcohol content, density, pH and electrical conductivity. Application of MLP segmented ethanol samples and identified the commercialization regions. Keywords: biofuel, backpropagation, hidden layer, training. Amostras de alcool etilico automotivo, comercializadas nas regioes Norte e Leste do Estado do Parana, foram submetidas a ensaios fisico-quimicos e os valores tabulados foram apresentados a rede neural do tipo Perceptron de multiplas camadas (MLP) para classificacao. Para o treinamento das redes foram utilizadas 200 epocas, uma taxa de aprendizagem de 0.05 e uma subdivisao das amostras, de forma aleatoria, em tres grupos sendo 70 para treinamento, 15 para teste e 15% para validacao. Foram treinadas 60 redes obtidas a partir de tres inicializacoes diferentes. Tres redes (uma de cada inicializacao) foram destacadas, e aquela com melhor desempenho apresentou oito neuronios na camada oculta com 95 de acerto no treinamento, 96 no teste e 96% na validacao. As variaveis mais importantes na classificacao, identificadas pela rede, seguiram a seguinte ordem: teor alcoolico, pH, massa especifica e condutividade eletrica. A aplicacao da rede MLP permitiu a segmentacao das amostras de alcool e, com isso, identificar as regioes de comercializacao. Palavras-chave:biocombustivel, retropropagacao, camada oculta, treinamento.</abstract><pub>Universidade Estadual de Maringa</pub><doi>10.4025/actascitechnol.v28i2.27597</doi></addata></record>
fulltext fulltext
identifier ISSN: 1806-2563
ispartof Acta scientiarum. Technology, 2016-04, Vol.38 (2)
issn 1806-2563
language spa
recordid cdi_gale_infotracmisc_A456899719
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
title The use of multilayer perceptron artificial neural networks for the classification of ethanol samples by commercialization region/Utilizacao de Redes Neurais Artificiais Perceptron de Multiplas Camadas para classificacao de amostras de etanol com a regiao de comercializacao
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T23%3A25%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20use%20of%20multilayer%20perceptron%20artificial%20neural%20networks%20for%20the%20classification%20of%20ethanol%20samples%20by%20commercialization%20region/Utilizacao%20de%20Redes%20Neurais%20Artificiais%20Perceptron%20de%20Multiplas%20Camadas%20para%20classificacao%20de%20amostras%20de%20etanol%20com%20a%20regiao%20de%20comercializacao&rft.jtitle=Acta%20scientiarum.%20Technology&rft.au=Romagnoli,%20Erica%20Signori&rft.date=2016-04-01&rft.volume=38&rft.issue=2&rft.issn=1806-2563&rft_id=info:doi/10.4025/actascitechnol.v28i2.27597&rft_dat=%3Cgale%3EA456899719%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A456899719&rfr_iscdi=true