Genetic algorithms with diversity measures to build classifier systems
The combination of classifiers is an active research area of the machine learning and pattern recognition communities. Many theoretical and empirical studies have been published demonstrating the advantages of the paradigm of combination of classifiers over the individual classifiers. When combining...
Gespeichert in:
Veröffentlicht in: | Investigación operacional 2015-09, Vol.36 (3), p.206 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng ; spa |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 206 |
container_title | Investigación operacional |
container_volume | 36 |
creator | Cabrera Hernandez, Leidys Morales Hernandez, Alejandro Casas Cardoso, Gladys M Martinez Jimenez, Yailen |
description | The combination of classifiers is an active research area of the machine learning and pattern recognition communities. Many theoretical and empirical studies have been published demonstrating the advantages of the paradigm of combination of classifiers over the individual classifiers. When combining classifiers it is important to guarantee the diversity among them [16]. Some statistical measures can be used to estimate how diverse the ensembles of classifiers are, they are called diversity measures. |
format | Article |
fullrecord | <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracmisc_A451311334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A451311334</galeid><sourcerecordid>A451311334</sourcerecordid><originalsourceid>FETCH-LOGICAL-g98t-3452f0848c6f185e02fb86782a441e9dfecbf67ca8c70d657a4081038bf957a53</originalsourceid><addsrcrecordid>eNotzMtKAzEUgOEsFKzVdwi4Hsjl5DLLUmwVCm66L5nMyRjJdCAnVfr2FnT18W_-O7YSyrgOtLAP7JHoSwiQCuyK7fZ4xpYjD2Vaam6fM_GfG3zM31gptyufMdClIvG28OGSy8hjCUQ5ZaycrtRwpid2n0IhfP53zY671-P2rTt87N-3m0M39b51GoxKwoOPNklvUKg0eOu8CgAS-zFhHJJ1MfjoxGiNCyC8FNoPqb-F0Wv28redQsFTPqel1RDnTPG0ASO1lFqD_gVdpkat</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Genetic algorithms with diversity measures to build classifier systems</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Cabrera Hernandez, Leidys ; Morales Hernandez, Alejandro ; Casas Cardoso, Gladys M ; Martinez Jimenez, Yailen</creator><creatorcontrib>Cabrera Hernandez, Leidys ; Morales Hernandez, Alejandro ; Casas Cardoso, Gladys M ; Martinez Jimenez, Yailen</creatorcontrib><description>The combination of classifiers is an active research area of the machine learning and pattern recognition communities. Many theoretical and empirical studies have been published demonstrating the advantages of the paradigm of combination of classifiers over the individual classifiers. When combining classifiers it is important to guarantee the diversity among them [16]. Some statistical measures can be used to estimate how diverse the ensembles of classifiers are, they are called diversity measures.</description><identifier>ISSN: 0257-4306</identifier><language>eng ; spa</language><publisher>Editorial Universitaria de la Republica de Cuba</publisher><ispartof>Investigación operacional, 2015-09, Vol.36 (3), p.206</ispartof><rights>COPYRIGHT 2015 Editorial Universitaria de la Republica de Cuba</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Cabrera Hernandez, Leidys</creatorcontrib><creatorcontrib>Morales Hernandez, Alejandro</creatorcontrib><creatorcontrib>Casas Cardoso, Gladys M</creatorcontrib><creatorcontrib>Martinez Jimenez, Yailen</creatorcontrib><title>Genetic algorithms with diversity measures to build classifier systems</title><title>Investigación operacional</title><description>The combination of classifiers is an active research area of the machine learning and pattern recognition communities. Many theoretical and empirical studies have been published demonstrating the advantages of the paradigm of combination of classifiers over the individual classifiers. When combining classifiers it is important to guarantee the diversity among them [16]. Some statistical measures can be used to estimate how diverse the ensembles of classifiers are, they are called diversity measures.</description><issn>0257-4306</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNotzMtKAzEUgOEsFKzVdwi4Hsjl5DLLUmwVCm66L5nMyRjJdCAnVfr2FnT18W_-O7YSyrgOtLAP7JHoSwiQCuyK7fZ4xpYjD2Vaam6fM_GfG3zM31gptyufMdClIvG28OGSy8hjCUQ5ZaycrtRwpid2n0IhfP53zY671-P2rTt87N-3m0M39b51GoxKwoOPNklvUKg0eOu8CgAS-zFhHJJ1MfjoxGiNCyC8FNoPqb-F0Wv28redQsFTPqel1RDnTPG0ASO1lFqD_gVdpkat</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Cabrera Hernandez, Leidys</creator><creator>Morales Hernandez, Alejandro</creator><creator>Casas Cardoso, Gladys M</creator><creator>Martinez Jimenez, Yailen</creator><general>Editorial Universitaria de la Republica de Cuba</general><scope>INF</scope></search><sort><creationdate>20150901</creationdate><title>Genetic algorithms with diversity measures to build classifier systems</title><author>Cabrera Hernandez, Leidys ; Morales Hernandez, Alejandro ; Casas Cardoso, Gladys M ; Martinez Jimenez, Yailen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g98t-3452f0848c6f185e02fb86782a441e9dfecbf67ca8c70d657a4081038bf957a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; spa</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cabrera Hernandez, Leidys</creatorcontrib><creatorcontrib>Morales Hernandez, Alejandro</creatorcontrib><creatorcontrib>Casas Cardoso, Gladys M</creatorcontrib><creatorcontrib>Martinez Jimenez, Yailen</creatorcontrib><collection>Gale OneFile: Informe Academico</collection><jtitle>Investigación operacional</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cabrera Hernandez, Leidys</au><au>Morales Hernandez, Alejandro</au><au>Casas Cardoso, Gladys M</au><au>Martinez Jimenez, Yailen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic algorithms with diversity measures to build classifier systems</atitle><jtitle>Investigación operacional</jtitle><date>2015-09-01</date><risdate>2015</risdate><volume>36</volume><issue>3</issue><spage>206</spage><pages>206-</pages><issn>0257-4306</issn><abstract>The combination of classifiers is an active research area of the machine learning and pattern recognition communities. Many theoretical and empirical studies have been published demonstrating the advantages of the paradigm of combination of classifiers over the individual classifiers. When combining classifiers it is important to guarantee the diversity among them [16]. Some statistical measures can be used to estimate how diverse the ensembles of classifiers are, they are called diversity measures.</abstract><pub>Editorial Universitaria de la Republica de Cuba</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0257-4306 |
ispartof | Investigación operacional, 2015-09, Vol.36 (3), p.206 |
issn | 0257-4306 |
language | eng ; spa |
recordid | cdi_gale_infotracmisc_A451311334 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | Genetic algorithms with diversity measures to build classifier systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T07%3A16%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20algorithms%20with%20diversity%20measures%20to%20build%20classifier%20systems&rft.jtitle=Investigaci%C3%B3n%20operacional&rft.au=Cabrera%20Hernandez,%20Leidys&rft.date=2015-09-01&rft.volume=36&rft.issue=3&rft.spage=206&rft.pages=206-&rft.issn=0257-4306&rft_id=info:doi/&rft_dat=%3Cgale%3EA451311334%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A451311334&rfr_iscdi=true |