Genetic algorithms with diversity measures to build classifier systems

The combination of classifiers is an active research area of the machine learning and pattern recognition communities. Many theoretical and empirical studies have been published demonstrating the advantages of the paradigm of combination of classifiers over the individual classifiers. When combining...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Investigación operacional 2015-09, Vol.36 (3), p.206
Hauptverfasser: Cabrera Hernandez, Leidys, Morales Hernandez, Alejandro, Casas Cardoso, Gladys M, Martinez Jimenez, Yailen
Format: Artikel
Sprache:eng ; spa
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 206
container_title Investigación operacional
container_volume 36
creator Cabrera Hernandez, Leidys
Morales Hernandez, Alejandro
Casas Cardoso, Gladys M
Martinez Jimenez, Yailen
description The combination of classifiers is an active research area of the machine learning and pattern recognition communities. Many theoretical and empirical studies have been published demonstrating the advantages of the paradigm of combination of classifiers over the individual classifiers. When combining classifiers it is important to guarantee the diversity among them [16]. Some statistical measures can be used to estimate how diverse the ensembles of classifiers are, they are called diversity measures.
format Article
fullrecord <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracmisc_A451311334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A451311334</galeid><sourcerecordid>A451311334</sourcerecordid><originalsourceid>FETCH-LOGICAL-g98t-3452f0848c6f185e02fb86782a441e9dfecbf67ca8c70d657a4081038bf957a53</originalsourceid><addsrcrecordid>eNotzMtKAzEUgOEsFKzVdwi4Hsjl5DLLUmwVCm66L5nMyRjJdCAnVfr2FnT18W_-O7YSyrgOtLAP7JHoSwiQCuyK7fZ4xpYjD2Vaam6fM_GfG3zM31gptyufMdClIvG28OGSy8hjCUQ5ZaycrtRwpid2n0IhfP53zY671-P2rTt87N-3m0M39b51GoxKwoOPNklvUKg0eOu8CgAS-zFhHJJ1MfjoxGiNCyC8FNoPqb-F0Wv28redQsFTPqel1RDnTPG0ASO1lFqD_gVdpkat</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Genetic algorithms with diversity measures to build classifier systems</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Cabrera Hernandez, Leidys ; Morales Hernandez, Alejandro ; Casas Cardoso, Gladys M ; Martinez Jimenez, Yailen</creator><creatorcontrib>Cabrera Hernandez, Leidys ; Morales Hernandez, Alejandro ; Casas Cardoso, Gladys M ; Martinez Jimenez, Yailen</creatorcontrib><description>The combination of classifiers is an active research area of the machine learning and pattern recognition communities. Many theoretical and empirical studies have been published demonstrating the advantages of the paradigm of combination of classifiers over the individual classifiers. When combining classifiers it is important to guarantee the diversity among them [16]. Some statistical measures can be used to estimate how diverse the ensembles of classifiers are, they are called diversity measures.</description><identifier>ISSN: 0257-4306</identifier><language>eng ; spa</language><publisher>Editorial Universitaria de la Republica de Cuba</publisher><ispartof>Investigación operacional, 2015-09, Vol.36 (3), p.206</ispartof><rights>COPYRIGHT 2015 Editorial Universitaria de la Republica de Cuba</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Cabrera Hernandez, Leidys</creatorcontrib><creatorcontrib>Morales Hernandez, Alejandro</creatorcontrib><creatorcontrib>Casas Cardoso, Gladys M</creatorcontrib><creatorcontrib>Martinez Jimenez, Yailen</creatorcontrib><title>Genetic algorithms with diversity measures to build classifier systems</title><title>Investigación operacional</title><description>The combination of classifiers is an active research area of the machine learning and pattern recognition communities. Many theoretical and empirical studies have been published demonstrating the advantages of the paradigm of combination of classifiers over the individual classifiers. When combining classifiers it is important to guarantee the diversity among them [16]. Some statistical measures can be used to estimate how diverse the ensembles of classifiers are, they are called diversity measures.</description><issn>0257-4306</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNotzMtKAzEUgOEsFKzVdwi4Hsjl5DLLUmwVCm66L5nMyRjJdCAnVfr2FnT18W_-O7YSyrgOtLAP7JHoSwiQCuyK7fZ4xpYjD2Vaam6fM_GfG3zM31gptyufMdClIvG28OGSy8hjCUQ5ZaycrtRwpid2n0IhfP53zY671-P2rTt87N-3m0M39b51GoxKwoOPNklvUKg0eOu8CgAS-zFhHJJ1MfjoxGiNCyC8FNoPqb-F0Wv28redQsFTPqel1RDnTPG0ASO1lFqD_gVdpkat</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Cabrera Hernandez, Leidys</creator><creator>Morales Hernandez, Alejandro</creator><creator>Casas Cardoso, Gladys M</creator><creator>Martinez Jimenez, Yailen</creator><general>Editorial Universitaria de la Republica de Cuba</general><scope>INF</scope></search><sort><creationdate>20150901</creationdate><title>Genetic algorithms with diversity measures to build classifier systems</title><author>Cabrera Hernandez, Leidys ; Morales Hernandez, Alejandro ; Casas Cardoso, Gladys M ; Martinez Jimenez, Yailen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g98t-3452f0848c6f185e02fb86782a441e9dfecbf67ca8c70d657a4081038bf957a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; spa</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cabrera Hernandez, Leidys</creatorcontrib><creatorcontrib>Morales Hernandez, Alejandro</creatorcontrib><creatorcontrib>Casas Cardoso, Gladys M</creatorcontrib><creatorcontrib>Martinez Jimenez, Yailen</creatorcontrib><collection>Gale OneFile: Informe Academico</collection><jtitle>Investigación operacional</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cabrera Hernandez, Leidys</au><au>Morales Hernandez, Alejandro</au><au>Casas Cardoso, Gladys M</au><au>Martinez Jimenez, Yailen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic algorithms with diversity measures to build classifier systems</atitle><jtitle>Investigación operacional</jtitle><date>2015-09-01</date><risdate>2015</risdate><volume>36</volume><issue>3</issue><spage>206</spage><pages>206-</pages><issn>0257-4306</issn><abstract>The combination of classifiers is an active research area of the machine learning and pattern recognition communities. Many theoretical and empirical studies have been published demonstrating the advantages of the paradigm of combination of classifiers over the individual classifiers. When combining classifiers it is important to guarantee the diversity among them [16]. Some statistical measures can be used to estimate how diverse the ensembles of classifiers are, they are called diversity measures.</abstract><pub>Editorial Universitaria de la Republica de Cuba</pub></addata></record>
fulltext fulltext
identifier ISSN: 0257-4306
ispartof Investigación operacional, 2015-09, Vol.36 (3), p.206
issn 0257-4306
language eng ; spa
recordid cdi_gale_infotracmisc_A451311334
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Genetic algorithms with diversity measures to build classifier systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T07%3A16%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20algorithms%20with%20diversity%20measures%20to%20build%20classifier%20systems&rft.jtitle=Investigaci%C3%B3n%20operacional&rft.au=Cabrera%20Hernandez,%20Leidys&rft.date=2015-09-01&rft.volume=36&rft.issue=3&rft.spage=206&rft.pages=206-&rft.issn=0257-4306&rft_id=info:doi/&rft_dat=%3Cgale%3EA451311334%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A451311334&rfr_iscdi=true