Comparative analysis of decision tree algorithms on quality of water contaminated with soil/Analise comparativa de algoritmos de arvore de decisao na classificacao da qualidade da agua contaminada por solo
Agriculture, roads, animal farms and other land uses may modify the water quality from rivers, dams and other surface freshwaters. In the control of the ecological process and for environmental management, it is necessary to quickly and accurately identify surface water contamination (in areas such...
Gespeichert in:
Veröffentlicht in: | Ciência rural 2015-02, p.267 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | spa |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 267 |
container_title | Ciência rural |
container_volume | |
creator | Dota, Mara Andrea Cugnasca, Carlos Eduardo Barbosa, Domingos Savio |
description | Agriculture, roads, animal farms and other land uses may modify the water quality from rivers, dams and other surface freshwaters. In the control of the ecological process and for environmental management, it is necessary to quickly and accurately identify surface water contamination (in areas such as rivers and dams) with contaminated runoff waters coming, for example, from cultivation and urban areas. This paper presents a comparative analysis of different classification algorithms applied to the data collected from a sample of soil-contaminated water aiming to identify if the water quality classification proposed in this research agrees with reality. The sample was part of a laboratory experiment, which began with a sample of treated water added with increasing fractions of soil. The results show that the proposed classification for water quality in this scenario is coherent, because different algorithms indicated a strong statistic relationship between the classes and their instances, that is, in the classes that qualify the water sample and the values which describe each class. The proposed water classification varies from excelling to very awful (12 classes). Key words: environmental control, runoff, wireless sensor networks, machine learning, data mining. Agricultura, estradas, fazendas de pecuaria e outros usos da terra podem alterar a qualidade da agua dos rios, barragens e outras aguas doces superficiais. No monitoramentode processos ecologicos para a gestao ambiental, e necessario identificar com rapidez e precisao a contaminacao de aguas superficiais (em areas como rios e represas) e subterraneas, com o escoamento da agua contaminada que,advinda, por exemplo, de areas de cultivo e urbanas. Este artigo apresenta uma analise comparativa dos diferentes algoritmos de classificacao aplicados a dados coletados a partir de uma amostra de agua contaminada do solo, com o objetivo de criar um modelo de classificacao para identificar a qualidade da agua. A amostra foi parte de um experimento de laboratorio, que partiu de uma amostra de agua tratada, adicionando-se fracoes crescentes de solo. Os resultados mostram que a classificacao proposta para a qualidade da agua neste cenario e coerente, porque diferentes algoritmos indicaram uma forte relacao estatistica entre as classes e suas instancias, ou seja, entre as classes que qualificam a amostra de agua e os valores que descrevem cada classe. O modelo de classificacao proposto utiliza 12 classes, que varia |
doi_str_mv | 10.1590/0103-8478cr20140147 |
format | Article |
fullrecord | <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracmisc_A442115765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A442115765</galeid><sourcerecordid>A442115765</sourcerecordid><originalsourceid>FETCH-LOGICAL-g675-61886d22f15620ec98faad11210b941cad95b67bc4a24f132a16006ab2b41e473</originalsourceid><addsrcrecordid>eNptjstOAyEYhVloYq0-gRsS19MCwzAzy6bxljRx033zD5cRwwwVpm36kL6TtLXqwkAC_zkf54DQHSUTWtRkSijJs4qXlQyMUJ52eYFGP-oVuo7xnRBW5pyP0Ofcd2sIMNitxtCD20cbsTdYaWmj9T0egk6Oa32ww1uXvB5_bMDZYX_AdjDogKXvB-hsnwaFd4nD0Vs3naU8G3Wyzx2Qcs9hnY_HKWx90IfbsRI87gFLBzFaYyXIJCg4VSo4UICh3cBvZxLWPqRG52_QpQEX9e33OUbLx4fl_DlbvD69zGeLrBVlkQlaVUIxZmghGNGyrgyAopRR0tScSlB10YiykRwYNzRnQAUhAhrWcKp5mY_R_Sm2BadXtjd-CCA7G-VqxjmjtChFkajJP1RaSnc2_V4bm_Q_D74AxIuN7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Comparative analysis of decision tree algorithms on quality of water contaminated with soil/Analise comparativa de algoritmos de arvore de decisao na classificacao da qualidade da agua contaminada por solo</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Dota, Mara Andrea ; Cugnasca, Carlos Eduardo ; Barbosa, Domingos Savio</creator><creatorcontrib>Dota, Mara Andrea ; Cugnasca, Carlos Eduardo ; Barbosa, Domingos Savio</creatorcontrib><description>Agriculture, roads, animal farms and other land uses may modify the water quality from rivers, dams and other surface freshwaters. In the control of the ecological process and for environmental management, it is necessary to quickly and accurately identify surface water contamination (in areas such as rivers and dams) with contaminated runoff waters coming, for example, from cultivation and urban areas. This paper presents a comparative analysis of different classification algorithms applied to the data collected from a sample of soil-contaminated water aiming to identify if the water quality classification proposed in this research agrees with reality. The sample was part of a laboratory experiment, which began with a sample of treated water added with increasing fractions of soil. The results show that the proposed classification for water quality in this scenario is coherent, because different algorithms indicated a strong statistic relationship between the classes and their instances, that is, in the classes that qualify the water sample and the values which describe each class. The proposed water classification varies from excelling to very awful (12 classes). Key words: environmental control, runoff, wireless sensor networks, machine learning, data mining. Agricultura, estradas, fazendas de pecuaria e outros usos da terra podem alterar a qualidade da agua dos rios, barragens e outras aguas doces superficiais. No monitoramentode processos ecologicos para a gestao ambiental, e necessario identificar com rapidez e precisao a contaminacao de aguas superficiais (em areas como rios e represas) e subterraneas, com o escoamento da agua contaminada que,advinda, por exemplo, de areas de cultivo e urbanas. Este artigo apresenta uma analise comparativa dos diferentes algoritmos de classificacao aplicados a dados coletados a partir de uma amostra de agua contaminada do solo, com o objetivo de criar um modelo de classificacao para identificar a qualidade da agua. A amostra foi parte de um experimento de laboratorio, que partiu de uma amostra de agua tratada, adicionando-se fracoes crescentes de solo. Os resultados mostram que a classificacao proposta para a qualidade da agua neste cenario e coerente, porque diferentes algoritmos indicaram uma forte relacao estatistica entre as classes e suas instancias, ou seja, entre as classes que qualificam a amostra de agua e os valores que descrevem cada classe. O modelo de classificacao proposto utiliza 12 classes, que variam de excelente a muito pessima. Palavras-chave: monitoramento ambiental, enxurradas, rede de sensores sem fio, aprendizado de maquina, mineracao de dados.</description><identifier>ISSN: 0103-8478</identifier><identifier>DOI: 10.1590/0103-8478cr20140147</identifier><language>spa</language><publisher>Universidade Federal de Santa Maria</publisher><ispartof>Ciência rural, 2015-02, p.267</ispartof><rights>COPYRIGHT 2015 Universidade Federal de Santa Maria</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Dota, Mara Andrea</creatorcontrib><creatorcontrib>Cugnasca, Carlos Eduardo</creatorcontrib><creatorcontrib>Barbosa, Domingos Savio</creatorcontrib><title>Comparative analysis of decision tree algorithms on quality of water contaminated with soil/Analise comparativa de algoritmos de arvore de decisao na classificacao da qualidade da agua contaminada por solo</title><title>Ciência rural</title><description>Agriculture, roads, animal farms and other land uses may modify the water quality from rivers, dams and other surface freshwaters. In the control of the ecological process and for environmental management, it is necessary to quickly and accurately identify surface water contamination (in areas such as rivers and dams) with contaminated runoff waters coming, for example, from cultivation and urban areas. This paper presents a comparative analysis of different classification algorithms applied to the data collected from a sample of soil-contaminated water aiming to identify if the water quality classification proposed in this research agrees with reality. The sample was part of a laboratory experiment, which began with a sample of treated water added with increasing fractions of soil. The results show that the proposed classification for water quality in this scenario is coherent, because different algorithms indicated a strong statistic relationship between the classes and their instances, that is, in the classes that qualify the water sample and the values which describe each class. The proposed water classification varies from excelling to very awful (12 classes). Key words: environmental control, runoff, wireless sensor networks, machine learning, data mining. Agricultura, estradas, fazendas de pecuaria e outros usos da terra podem alterar a qualidade da agua dos rios, barragens e outras aguas doces superficiais. No monitoramentode processos ecologicos para a gestao ambiental, e necessario identificar com rapidez e precisao a contaminacao de aguas superficiais (em areas como rios e represas) e subterraneas, com o escoamento da agua contaminada que,advinda, por exemplo, de areas de cultivo e urbanas. Este artigo apresenta uma analise comparativa dos diferentes algoritmos de classificacao aplicados a dados coletados a partir de uma amostra de agua contaminada do solo, com o objetivo de criar um modelo de classificacao para identificar a qualidade da agua. A amostra foi parte de um experimento de laboratorio, que partiu de uma amostra de agua tratada, adicionando-se fracoes crescentes de solo. Os resultados mostram que a classificacao proposta para a qualidade da agua neste cenario e coerente, porque diferentes algoritmos indicaram uma forte relacao estatistica entre as classes e suas instancias, ou seja, entre as classes que qualificam a amostra de agua e os valores que descrevem cada classe. O modelo de classificacao proposto utiliza 12 classes, que variam de excelente a muito pessima. Palavras-chave: monitoramento ambiental, enxurradas, rede de sensores sem fio, aprendizado de maquina, mineracao de dados.</description><issn>0103-8478</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNptjstOAyEYhVloYq0-gRsS19MCwzAzy6bxljRx033zD5cRwwwVpm36kL6TtLXqwkAC_zkf54DQHSUTWtRkSijJs4qXlQyMUJ52eYFGP-oVuo7xnRBW5pyP0Ofcd2sIMNitxtCD20cbsTdYaWmj9T0egk6Oa32ww1uXvB5_bMDZYX_AdjDogKXvB-hsnwaFd4nD0Vs3naU8G3Wyzx2Qcs9hnY_HKWx90IfbsRI87gFLBzFaYyXIJCg4VSo4UICh3cBvZxLWPqRG52_QpQEX9e33OUbLx4fl_DlbvD69zGeLrBVlkQlaVUIxZmghGNGyrgyAopRR0tScSlB10YiykRwYNzRnQAUhAhrWcKp5mY_R_Sm2BadXtjd-CCA7G-VqxjmjtChFkajJP1RaSnc2_V4bm_Q_D74AxIuN7w</recordid><startdate>20150201</startdate><enddate>20150201</enddate><creator>Dota, Mara Andrea</creator><creator>Cugnasca, Carlos Eduardo</creator><creator>Barbosa, Domingos Savio</creator><general>Universidade Federal de Santa Maria</general><scope>INF</scope></search><sort><creationdate>20150201</creationdate><title>Comparative analysis of decision tree algorithms on quality of water contaminated with soil/Analise comparativa de algoritmos de arvore de decisao na classificacao da qualidade da agua contaminada por solo</title><author>Dota, Mara Andrea ; Cugnasca, Carlos Eduardo ; Barbosa, Domingos Savio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g675-61886d22f15620ec98faad11210b941cad95b67bc4a24f132a16006ab2b41e473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>spa</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dota, Mara Andrea</creatorcontrib><creatorcontrib>Cugnasca, Carlos Eduardo</creatorcontrib><creatorcontrib>Barbosa, Domingos Savio</creatorcontrib><collection>Gale OneFile: Informe Academico</collection><jtitle>Ciência rural</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dota, Mara Andrea</au><au>Cugnasca, Carlos Eduardo</au><au>Barbosa, Domingos Savio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative analysis of decision tree algorithms on quality of water contaminated with soil/Analise comparativa de algoritmos de arvore de decisao na classificacao da qualidade da agua contaminada por solo</atitle><jtitle>Ciência rural</jtitle><date>2015-02-01</date><risdate>2015</risdate><spage>267</spage><pages>267-</pages><issn>0103-8478</issn><abstract>Agriculture, roads, animal farms and other land uses may modify the water quality from rivers, dams and other surface freshwaters. In the control of the ecological process and for environmental management, it is necessary to quickly and accurately identify surface water contamination (in areas such as rivers and dams) with contaminated runoff waters coming, for example, from cultivation and urban areas. This paper presents a comparative analysis of different classification algorithms applied to the data collected from a sample of soil-contaminated water aiming to identify if the water quality classification proposed in this research agrees with reality. The sample was part of a laboratory experiment, which began with a sample of treated water added with increasing fractions of soil. The results show that the proposed classification for water quality in this scenario is coherent, because different algorithms indicated a strong statistic relationship between the classes and their instances, that is, in the classes that qualify the water sample and the values which describe each class. The proposed water classification varies from excelling to very awful (12 classes). Key words: environmental control, runoff, wireless sensor networks, machine learning, data mining. Agricultura, estradas, fazendas de pecuaria e outros usos da terra podem alterar a qualidade da agua dos rios, barragens e outras aguas doces superficiais. No monitoramentode processos ecologicos para a gestao ambiental, e necessario identificar com rapidez e precisao a contaminacao de aguas superficiais (em areas como rios e represas) e subterraneas, com o escoamento da agua contaminada que,advinda, por exemplo, de areas de cultivo e urbanas. Este artigo apresenta uma analise comparativa dos diferentes algoritmos de classificacao aplicados a dados coletados a partir de uma amostra de agua contaminada do solo, com o objetivo de criar um modelo de classificacao para identificar a qualidade da agua. A amostra foi parte de um experimento de laboratorio, que partiu de uma amostra de agua tratada, adicionando-se fracoes crescentes de solo. Os resultados mostram que a classificacao proposta para a qualidade da agua neste cenario e coerente, porque diferentes algoritmos indicaram uma forte relacao estatistica entre as classes e suas instancias, ou seja, entre as classes que qualificam a amostra de agua e os valores que descrevem cada classe. O modelo de classificacao proposto utiliza 12 classes, que variam de excelente a muito pessima. Palavras-chave: monitoramento ambiental, enxurradas, rede de sensores sem fio, aprendizado de maquina, mineracao de dados.</abstract><pub>Universidade Federal de Santa Maria</pub><doi>10.1590/0103-8478cr20140147</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0103-8478 |
ispartof | Ciência rural, 2015-02, p.267 |
issn | 0103-8478 |
language | spa |
recordid | cdi_gale_infotracmisc_A442115765 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
title | Comparative analysis of decision tree algorithms on quality of water contaminated with soil/Analise comparativa de algoritmos de arvore de decisao na classificacao da qualidade da agua contaminada por solo |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T19%3A09%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20analysis%20of%20decision%20tree%20algorithms%20on%20quality%20of%20water%20contaminated%20with%20soil/Analise%20comparativa%20de%20algoritmos%20de%20arvore%20de%20decisao%20na%20classificacao%20da%20qualidade%20da%20agua%20contaminada%20por%20solo&rft.jtitle=Ci%C3%AAncia%20rural&rft.au=Dota,%20Mara%20Andrea&rft.date=2015-02-01&rft.spage=267&rft.pages=267-&rft.issn=0103-8478&rft_id=info:doi/10.1590/0103-8478cr20140147&rft_dat=%3Cgale%3EA442115765%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A442115765&rfr_iscdi=true |