On Convergence of the Accelerated Newton Method Under Generalized Lipschitz Conditions
We study the problem of local convergence of the accelerated Newton method for the solution of nonlinear functional equations under generalized Lipschitz conditions for the first- and second-order Fréchet derivatives. We show that the accelerated method is characterized by the quadratic order of con...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2016, Vol.212 (1), p.16-26 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 26 |
---|---|
container_issue | 1 |
container_start_page | 16 |
container_title | Journal of mathematical sciences (New York, N.Y.) |
container_volume | 212 |
creator | Shakhno, S. М. |
description | We study the problem of local convergence of the accelerated Newton method for the solution of nonlinear functional equations under generalized Lipschitz conditions for the first- and second-order Fréchet derivatives. We show that the accelerated method is characterized by the quadratic order of convergence and compare it with the classical Newton method. |
doi_str_mv | 10.1007/s10958-015-2645-5 |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracmisc_A436439968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A436439968</galeid><sourcerecordid>A436439968</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4125-cf3b2baa4a6209f66a3723d1bdb91e40a4701f950d803360126dd6f057d804453</originalsourceid><addsrcrecordid>eNp9kUtrWzEQhUVoIKnTH5Ddha66UCpdPa7v0pi8wEmgSboVsjS6VrClICnPX1-Zm43BFC1GzHxn4MxB6JSSM0pI9ztT0ospJlTgVnKBxQE6pqJjeNr14lv9k67FjHX8CH3P-YlUjZyyY_T3LjTzGF4hDRAMNNE1ZQXNzBhYQ9IFbHMLbyWG5gbKKtrmMVhIzSWEOl37zzpf-OdsVr58bhdZX3wM-QQdOr3O8OOrTtDjxfnD_Aov7i6v57MFNpy2AhvHlu1Sa65lS3onpWZdyyxd2mVPgRPNO0JdL4idEsYkoa20VjoiutrgXLAJ-jnuHfQalA8ulqTNxmejZpxJzvq-2pwgvIcaRg8xgPO1vcOf7eHrs7DxZq_g146gMgXey6BfclbX9392WTqyJsWcEzj1nPxGpw9FidpmqcYsVc1SbbNUW5vtqMmVDQMk9RRfUqiX_Y_oH5JRnnM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On Convergence of the Accelerated Newton Method Under Generalized Lipschitz Conditions</title><source>SpringerLink Journals - AutoHoldings</source><creator>Shakhno, S. М.</creator><creatorcontrib>Shakhno, S. М.</creatorcontrib><description>We study the problem of local convergence of the accelerated Newton method for the solution of nonlinear functional equations under generalized Lipschitz conditions for the first- and second-order Fréchet derivatives. We show that the accelerated method is characterized by the quadratic order of convergence and compare it with the classical Newton method.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-015-2645-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Mathematics ; Mathematics and Statistics</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2016, Vol.212 (1), p.16-26</ispartof><rights>Springer Science+Business Media New York 2015</rights><rights>COPYRIGHT 2016 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4125-cf3b2baa4a6209f66a3723d1bdb91e40a4701f950d803360126dd6f057d804453</citedby><cites>FETCH-LOGICAL-c4125-cf3b2baa4a6209f66a3723d1bdb91e40a4701f950d803360126dd6f057d804453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-015-2645-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-015-2645-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Shakhno, S. М.</creatorcontrib><title>On Convergence of the Accelerated Newton Method Under Generalized Lipschitz Conditions</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>We study the problem of local convergence of the accelerated Newton method for the solution of nonlinear functional equations under generalized Lipschitz conditions for the first- and second-order Fréchet derivatives. We show that the accelerated method is characterized by the quadratic order of convergence and compare it with the classical Newton method.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kUtrWzEQhUVoIKnTH5Ddha66UCpdPa7v0pi8wEmgSboVsjS6VrClICnPX1-Zm43BFC1GzHxn4MxB6JSSM0pI9ztT0ospJlTgVnKBxQE6pqJjeNr14lv9k67FjHX8CH3P-YlUjZyyY_T3LjTzGF4hDRAMNNE1ZQXNzBhYQ9IFbHMLbyWG5gbKKtrmMVhIzSWEOl37zzpf-OdsVr58bhdZX3wM-QQdOr3O8OOrTtDjxfnD_Aov7i6v57MFNpy2AhvHlu1Sa65lS3onpWZdyyxd2mVPgRPNO0JdL4idEsYkoa20VjoiutrgXLAJ-jnuHfQalA8ulqTNxmejZpxJzvq-2pwgvIcaRg8xgPO1vcOf7eHrs7DxZq_g146gMgXey6BfclbX9392WTqyJsWcEzj1nPxGpw9FidpmqcYsVc1SbbNUW5vtqMmVDQMk9RRfUqiX_Y_oH5JRnnM</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Shakhno, S. М.</creator><general>Springer US</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>2016</creationdate><title>On Convergence of the Accelerated Newton Method Under Generalized Lipschitz Conditions</title><author>Shakhno, S. М.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4125-cf3b2baa4a6209f66a3723d1bdb91e40a4701f950d803360126dd6f057d804453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shakhno, S. М.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shakhno, S. М.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Convergence of the Accelerated Newton Method Under Generalized Lipschitz Conditions</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2016</date><risdate>2016</risdate><volume>212</volume><issue>1</issue><spage>16</spage><epage>26</epage><pages>16-26</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>We study the problem of local convergence of the accelerated Newton method for the solution of nonlinear functional equations under generalized Lipschitz conditions for the first- and second-order Fréchet derivatives. We show that the accelerated method is characterized by the quadratic order of convergence and compare it with the classical Newton method.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-015-2645-5</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-3374 |
ispartof | Journal of mathematical sciences (New York, N.Y.), 2016, Vol.212 (1), p.16-26 |
issn | 1072-3374 1573-8795 |
language | eng |
recordid | cdi_gale_infotracmisc_A436439968 |
source | SpringerLink Journals - AutoHoldings |
subjects | Mathematics Mathematics and Statistics |
title | On Convergence of the Accelerated Newton Method Under Generalized Lipschitz Conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A38%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Convergence%20of%20the%20Accelerated%20Newton%20Method%20Under%20Generalized%20Lipschitz%20Conditions&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Shakhno,%20S.%20%D0%9C.&rft.date=2016&rft.volume=212&rft.issue=1&rft.spage=16&rft.epage=26&rft.pages=16-26&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-015-2645-5&rft_dat=%3Cgale_cross%3EA436439968%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A436439968&rfr_iscdi=true |