On Convergence of the Accelerated Newton Method Under Generalized Lipschitz Conditions

We study the problem of local convergence of the accelerated Newton method for the solution of nonlinear functional equations under generalized Lipschitz conditions for the first- and second-order Fréchet derivatives. We show that the accelerated method is characterized by the quadratic order of con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2016, Vol.212 (1), p.16-26
1. Verfasser: Shakhno, S. М.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 26
container_issue 1
container_start_page 16
container_title Journal of mathematical sciences (New York, N.Y.)
container_volume 212
creator Shakhno, S. М.
description We study the problem of local convergence of the accelerated Newton method for the solution of nonlinear functional equations under generalized Lipschitz conditions for the first- and second-order Fréchet derivatives. We show that the accelerated method is characterized by the quadratic order of convergence and compare it with the classical Newton method.
doi_str_mv 10.1007/s10958-015-2645-5
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracmisc_A436439968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A436439968</galeid><sourcerecordid>A436439968</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4125-cf3b2baa4a6209f66a3723d1bdb91e40a4701f950d803360126dd6f057d804453</originalsourceid><addsrcrecordid>eNp9kUtrWzEQhUVoIKnTH5Ddha66UCpdPa7v0pi8wEmgSboVsjS6VrClICnPX1-Zm43BFC1GzHxn4MxB6JSSM0pI9ztT0ospJlTgVnKBxQE6pqJjeNr14lv9k67FjHX8CH3P-YlUjZyyY_T3LjTzGF4hDRAMNNE1ZQXNzBhYQ9IFbHMLbyWG5gbKKtrmMVhIzSWEOl37zzpf-OdsVr58bhdZX3wM-QQdOr3O8OOrTtDjxfnD_Aov7i6v57MFNpy2AhvHlu1Sa65lS3onpWZdyyxd2mVPgRPNO0JdL4idEsYkoa20VjoiutrgXLAJ-jnuHfQalA8ulqTNxmejZpxJzvq-2pwgvIcaRg8xgPO1vcOf7eHrs7DxZq_g146gMgXey6BfclbX9392WTqyJsWcEzj1nPxGpw9FidpmqcYsVc1SbbNUW5vtqMmVDQMk9RRfUqiX_Y_oH5JRnnM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On Convergence of the Accelerated Newton Method Under Generalized Lipschitz Conditions</title><source>SpringerLink Journals - AutoHoldings</source><creator>Shakhno, S. М.</creator><creatorcontrib>Shakhno, S. М.</creatorcontrib><description>We study the problem of local convergence of the accelerated Newton method for the solution of nonlinear functional equations under generalized Lipschitz conditions for the first- and second-order Fréchet derivatives. We show that the accelerated method is characterized by the quadratic order of convergence and compare it with the classical Newton method.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-015-2645-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Mathematics ; Mathematics and Statistics</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2016, Vol.212 (1), p.16-26</ispartof><rights>Springer Science+Business Media New York 2015</rights><rights>COPYRIGHT 2016 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4125-cf3b2baa4a6209f66a3723d1bdb91e40a4701f950d803360126dd6f057d804453</citedby><cites>FETCH-LOGICAL-c4125-cf3b2baa4a6209f66a3723d1bdb91e40a4701f950d803360126dd6f057d804453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-015-2645-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-015-2645-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Shakhno, S. М.</creatorcontrib><title>On Convergence of the Accelerated Newton Method Under Generalized Lipschitz Conditions</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>We study the problem of local convergence of the accelerated Newton method for the solution of nonlinear functional equations under generalized Lipschitz conditions for the first- and second-order Fréchet derivatives. We show that the accelerated method is characterized by the quadratic order of convergence and compare it with the classical Newton method.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kUtrWzEQhUVoIKnTH5Ddha66UCpdPa7v0pi8wEmgSboVsjS6VrClICnPX1-Zm43BFC1GzHxn4MxB6JSSM0pI9ztT0ospJlTgVnKBxQE6pqJjeNr14lv9k67FjHX8CH3P-YlUjZyyY_T3LjTzGF4hDRAMNNE1ZQXNzBhYQ9IFbHMLbyWG5gbKKtrmMVhIzSWEOl37zzpf-OdsVr58bhdZX3wM-QQdOr3O8OOrTtDjxfnD_Aov7i6v57MFNpy2AhvHlu1Sa65lS3onpWZdyyxd2mVPgRPNO0JdL4idEsYkoa20VjoiutrgXLAJ-jnuHfQalA8ulqTNxmejZpxJzvq-2pwgvIcaRg8xgPO1vcOf7eHrs7DxZq_g146gMgXey6BfclbX9392WTqyJsWcEzj1nPxGpw9FidpmqcYsVc1SbbNUW5vtqMmVDQMk9RRfUqiX_Y_oH5JRnnM</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Shakhno, S. М.</creator><general>Springer US</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>2016</creationdate><title>On Convergence of the Accelerated Newton Method Under Generalized Lipschitz Conditions</title><author>Shakhno, S. М.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4125-cf3b2baa4a6209f66a3723d1bdb91e40a4701f950d803360126dd6f057d804453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shakhno, S. М.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shakhno, S. М.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Convergence of the Accelerated Newton Method Under Generalized Lipschitz Conditions</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2016</date><risdate>2016</risdate><volume>212</volume><issue>1</issue><spage>16</spage><epage>26</epage><pages>16-26</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>We study the problem of local convergence of the accelerated Newton method for the solution of nonlinear functional equations under generalized Lipschitz conditions for the first- and second-order Fréchet derivatives. We show that the accelerated method is characterized by the quadratic order of convergence and compare it with the classical Newton method.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-015-2645-5</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1072-3374
ispartof Journal of mathematical sciences (New York, N.Y.), 2016, Vol.212 (1), p.16-26
issn 1072-3374
1573-8795
language eng
recordid cdi_gale_infotracmisc_A436439968
source SpringerLink Journals - AutoHoldings
subjects Mathematics
Mathematics and Statistics
title On Convergence of the Accelerated Newton Method Under Generalized Lipschitz Conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A38%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Convergence%20of%20the%20Accelerated%20Newton%20Method%20Under%20Generalized%20Lipschitz%20Conditions&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Shakhno,%20S.%20%D0%9C.&rft.date=2016&rft.volume=212&rft.issue=1&rft.spage=16&rft.epage=26&rft.pages=16-26&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-015-2645-5&rft_dat=%3Cgale_cross%3EA436439968%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A436439968&rfr_iscdi=true