On Convergence of the Accelerated Newton Method Under Generalized Lipschitz Conditions
We study the problem of local convergence of the accelerated Newton method for the solution of nonlinear functional equations under generalized Lipschitz conditions for the first- and second-order Fréchet derivatives. We show that the accelerated method is characterized by the quadratic order of con...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2016, Vol.212 (1), p.16-26 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the problem of local convergence of the accelerated Newton method for the solution of nonlinear functional equations under generalized Lipschitz conditions for the first- and second-order Fréchet derivatives. We show that the accelerated method is characterized by the quadratic order of convergence and compare it with the classical Newton method. |
---|---|
ISSN: | 1072-3374 1573-8795 |
DOI: | 10.1007/s10958-015-2645-5 |