Edge-based Schwarz methods for the Crouzeix-Raviart finite volume element discretization of elliptic problems

In this paper, we present two variants of the additive Schwarz method for a Crouzeix-Raviart finite volume element (CRFVE) discretization of second-order elliptic problems with discontinuous coefficients, where the discontinuities may be across subdomain boundaries. The preconditioner in one variant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic transactions on numerical analysis 2015-01, p.443
Hauptverfasser: Loneland, Atle, Marcinkowski, Leszek, Rahman, Talal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 443
container_title Electronic transactions on numerical analysis
container_volume
creator Loneland, Atle
Marcinkowski, Leszek
Rahman, Talal
description In this paper, we present two variants of the additive Schwarz method for a Crouzeix-Raviart finite volume element (CRFVE) discretization of second-order elliptic problems with discontinuous coefficients, where the discontinuities may be across subdomain boundaries. The preconditioner in one variant is symmetric, while in the other variant it is nonsymmetric. The proposed methods are quasi optimal, in the sense that the convergence of the preconditioned GMRES iteration in both cases depend only poly-logarithmically on the ratio of the subdomain size to the mesh size. Key words. domain decomposition, Crouzeix-Raviart element, additive Schwarz method, finite volume element, GMRES AMS subject classifications. 65F10, 65N22, 65N30, 63N55
format Article
fullrecord <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracmisc_A433385326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A433385326</galeid><sourcerecordid>A433385326</sourcerecordid><originalsourceid>FETCH-LOGICAL-g152t-d3cd506c959c99a0999903ffe401d5032260bc30e03e9e8b0a057dc6ec0a37303</originalsourceid><addsrcrecordid>eNptjk1LAzEQhhdRsFb_Q8BzZHZnN9scS6kfUBD8OJdsMmkju5uSpFX6643UgwfnPcww7_MOc1ZMSpAtr0G05z-zmHEpSrwsrmL8AChlXTWTYliaDfFORTLsVW8_VTiygdLWm8isDyxtiS2C3x_JffEXdXAqJGbd6BKxg-_3AzHqaaAxMeOiDpTcUSXnR-Ztdnq3S06zXfBdpuJ1cWFVH-nmt0-L9_vl2-KRr54fnhbzFd-UTZW4QW0aEFo2UkupQOYCtJZqKLOBVSWg0wgESJJmHShoWqMFaVDYIuC0uD3d3aie1m60PgWlh_zgel4j4qzBSmTq7h8qy9DgtB_Jurz_E_gGpJRmyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Edge-based Schwarz methods for the Crouzeix-Raviart finite volume element discretization of elliptic problems</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Loneland, Atle ; Marcinkowski, Leszek ; Rahman, Talal</creator><creatorcontrib>Loneland, Atle ; Marcinkowski, Leszek ; Rahman, Talal</creatorcontrib><description>In this paper, we present two variants of the additive Schwarz method for a Crouzeix-Raviart finite volume element (CRFVE) discretization of second-order elliptic problems with discontinuous coefficients, where the discontinuities may be across subdomain boundaries. The preconditioner in one variant is symmetric, while in the other variant it is nonsymmetric. The proposed methods are quasi optimal, in the sense that the convergence of the preconditioned GMRES iteration in both cases depend only poly-logarithmically on the ratio of the subdomain size to the mesh size. Key words. domain decomposition, Crouzeix-Raviart element, additive Schwarz method, finite volume element, GMRES AMS subject classifications. 65F10, 65N22, 65N30, 63N55</description><identifier>ISSN: 1068-9613</identifier><identifier>EISSN: 1097-4067</identifier><language>eng</language><publisher>Institute of Computational Mathematics</publisher><subject>Analysis ; Finite element method ; Iterative methods (Mathematics)</subject><ispartof>Electronic transactions on numerical analysis, 2015-01, p.443</ispartof><rights>COPYRIGHT 2015 Institute of Computational Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781</link.rule.ids></links><search><creatorcontrib>Loneland, Atle</creatorcontrib><creatorcontrib>Marcinkowski, Leszek</creatorcontrib><creatorcontrib>Rahman, Talal</creatorcontrib><title>Edge-based Schwarz methods for the Crouzeix-Raviart finite volume element discretization of elliptic problems</title><title>Electronic transactions on numerical analysis</title><description>In this paper, we present two variants of the additive Schwarz method for a Crouzeix-Raviart finite volume element (CRFVE) discretization of second-order elliptic problems with discontinuous coefficients, where the discontinuities may be across subdomain boundaries. The preconditioner in one variant is symmetric, while in the other variant it is nonsymmetric. The proposed methods are quasi optimal, in the sense that the convergence of the preconditioned GMRES iteration in both cases depend only poly-logarithmically on the ratio of the subdomain size to the mesh size. Key words. domain decomposition, Crouzeix-Raviart element, additive Schwarz method, finite volume element, GMRES AMS subject classifications. 65F10, 65N22, 65N30, 63N55</description><subject>Analysis</subject><subject>Finite element method</subject><subject>Iterative methods (Mathematics)</subject><issn>1068-9613</issn><issn>1097-4067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNptjk1LAzEQhhdRsFb_Q8BzZHZnN9scS6kfUBD8OJdsMmkju5uSpFX6643UgwfnPcww7_MOc1ZMSpAtr0G05z-zmHEpSrwsrmL8AChlXTWTYliaDfFORTLsVW8_VTiygdLWm8isDyxtiS2C3x_JffEXdXAqJGbd6BKxg-_3AzHqaaAxMeOiDpTcUSXnR-Ztdnq3S06zXfBdpuJ1cWFVH-nmt0-L9_vl2-KRr54fnhbzFd-UTZW4QW0aEFo2UkupQOYCtJZqKLOBVSWg0wgESJJmHShoWqMFaVDYIuC0uD3d3aie1m60PgWlh_zgel4j4qzBSmTq7h8qy9DgtB_Jurz_E_gGpJRmyA</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Loneland, Atle</creator><creator>Marcinkowski, Leszek</creator><creator>Rahman, Talal</creator><general>Institute of Computational Mathematics</general><scope/></search><sort><creationdate>20150101</creationdate><title>Edge-based Schwarz methods for the Crouzeix-Raviart finite volume element discretization of elliptic problems</title><author>Loneland, Atle ; Marcinkowski, Leszek ; Rahman, Talal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g152t-d3cd506c959c99a0999903ffe401d5032260bc30e03e9e8b0a057dc6ec0a37303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Analysis</topic><topic>Finite element method</topic><topic>Iterative methods (Mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loneland, Atle</creatorcontrib><creatorcontrib>Marcinkowski, Leszek</creatorcontrib><creatorcontrib>Rahman, Talal</creatorcontrib><jtitle>Electronic transactions on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loneland, Atle</au><au>Marcinkowski, Leszek</au><au>Rahman, Talal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Edge-based Schwarz methods for the Crouzeix-Raviart finite volume element discretization of elliptic problems</atitle><jtitle>Electronic transactions on numerical analysis</jtitle><date>2015-01-01</date><risdate>2015</risdate><spage>443</spage><pages>443-</pages><issn>1068-9613</issn><eissn>1097-4067</eissn><abstract>In this paper, we present two variants of the additive Schwarz method for a Crouzeix-Raviart finite volume element (CRFVE) discretization of second-order elliptic problems with discontinuous coefficients, where the discontinuities may be across subdomain boundaries. The preconditioner in one variant is symmetric, while in the other variant it is nonsymmetric. The proposed methods are quasi optimal, in the sense that the convergence of the preconditioned GMRES iteration in both cases depend only poly-logarithmically on the ratio of the subdomain size to the mesh size. Key words. domain decomposition, Crouzeix-Raviart element, additive Schwarz method, finite volume element, GMRES AMS subject classifications. 65F10, 65N22, 65N30, 63N55</abstract><pub>Institute of Computational Mathematics</pub></addata></record>
fulltext fulltext
identifier ISSN: 1068-9613
ispartof Electronic transactions on numerical analysis, 2015-01, p.443
issn 1068-9613
1097-4067
language eng
recordid cdi_gale_infotracmisc_A433385326
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Analysis
Finite element method
Iterative methods (Mathematics)
title Edge-based Schwarz methods for the Crouzeix-Raviart finite volume element discretization of elliptic problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T19%3A37%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Edge-based%20Schwarz%20methods%20for%20the%20Crouzeix-Raviart%20finite%20volume%20element%20discretization%20of%20elliptic%20problems&rft.jtitle=Electronic%20transactions%20on%20numerical%20analysis&rft.au=Loneland,%20Atle&rft.date=2015-01-01&rft.spage=443&rft.pages=443-&rft.issn=1068-9613&rft.eissn=1097-4067&rft_id=info:doi/&rft_dat=%3Cgale%3EA433385326%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A433385326&rfr_iscdi=true