Edge-based Schwarz methods for the Crouzeix-Raviart finite volume element discretization of elliptic problems
In this paper, we present two variants of the additive Schwarz method for a Crouzeix-Raviart finite volume element (CRFVE) discretization of second-order elliptic problems with discontinuous coefficients, where the discontinuities may be across subdomain boundaries. The preconditioner in one variant...
Gespeichert in:
Veröffentlicht in: | Electronic transactions on numerical analysis 2015-01, p.443 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 443 |
container_title | Electronic transactions on numerical analysis |
container_volume | |
creator | Loneland, Atle Marcinkowski, Leszek Rahman, Talal |
description | In this paper, we present two variants of the additive Schwarz method for a Crouzeix-Raviart finite volume element (CRFVE) discretization of second-order elliptic problems with discontinuous coefficients, where the discontinuities may be across subdomain boundaries. The preconditioner in one variant is symmetric, while in the other variant it is nonsymmetric. The proposed methods are quasi optimal, in the sense that the convergence of the preconditioned GMRES iteration in both cases depend only poly-logarithmically on the ratio of the subdomain size to the mesh size. Key words. domain decomposition, Crouzeix-Raviart element, additive Schwarz method, finite volume element, GMRES AMS subject classifications. 65F10, 65N22, 65N30, 63N55 |
format | Article |
fullrecord | <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracmisc_A433385326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A433385326</galeid><sourcerecordid>A433385326</sourcerecordid><originalsourceid>FETCH-LOGICAL-g152t-d3cd506c959c99a0999903ffe401d5032260bc30e03e9e8b0a057dc6ec0a37303</originalsourceid><addsrcrecordid>eNptjk1LAzEQhhdRsFb_Q8BzZHZnN9scS6kfUBD8OJdsMmkju5uSpFX6643UgwfnPcww7_MOc1ZMSpAtr0G05z-zmHEpSrwsrmL8AChlXTWTYliaDfFORTLsVW8_VTiygdLWm8isDyxtiS2C3x_JffEXdXAqJGbd6BKxg-_3AzHqaaAxMeOiDpTcUSXnR-Ztdnq3S06zXfBdpuJ1cWFVH-nmt0-L9_vl2-KRr54fnhbzFd-UTZW4QW0aEFo2UkupQOYCtJZqKLOBVSWg0wgESJJmHShoWqMFaVDYIuC0uD3d3aie1m60PgWlh_zgel4j4qzBSmTq7h8qy9DgtB_Jurz_E_gGpJRmyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Edge-based Schwarz methods for the Crouzeix-Raviart finite volume element discretization of elliptic problems</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Loneland, Atle ; Marcinkowski, Leszek ; Rahman, Talal</creator><creatorcontrib>Loneland, Atle ; Marcinkowski, Leszek ; Rahman, Talal</creatorcontrib><description>In this paper, we present two variants of the additive Schwarz method for a Crouzeix-Raviart finite volume element (CRFVE) discretization of second-order elliptic problems with discontinuous coefficients, where the discontinuities may be across subdomain boundaries. The preconditioner in one variant is symmetric, while in the other variant it is nonsymmetric. The proposed methods are quasi optimal, in the sense that the convergence of the preconditioned GMRES iteration in both cases depend only poly-logarithmically on the ratio of the subdomain size to the mesh size. Key words. domain decomposition, Crouzeix-Raviart element, additive Schwarz method, finite volume element, GMRES AMS subject classifications. 65F10, 65N22, 65N30, 63N55</description><identifier>ISSN: 1068-9613</identifier><identifier>EISSN: 1097-4067</identifier><language>eng</language><publisher>Institute of Computational Mathematics</publisher><subject>Analysis ; Finite element method ; Iterative methods (Mathematics)</subject><ispartof>Electronic transactions on numerical analysis, 2015-01, p.443</ispartof><rights>COPYRIGHT 2015 Institute of Computational Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781</link.rule.ids></links><search><creatorcontrib>Loneland, Atle</creatorcontrib><creatorcontrib>Marcinkowski, Leszek</creatorcontrib><creatorcontrib>Rahman, Talal</creatorcontrib><title>Edge-based Schwarz methods for the Crouzeix-Raviart finite volume element discretization of elliptic problems</title><title>Electronic transactions on numerical analysis</title><description>In this paper, we present two variants of the additive Schwarz method for a Crouzeix-Raviart finite volume element (CRFVE) discretization of second-order elliptic problems with discontinuous coefficients, where the discontinuities may be across subdomain boundaries. The preconditioner in one variant is symmetric, while in the other variant it is nonsymmetric. The proposed methods are quasi optimal, in the sense that the convergence of the preconditioned GMRES iteration in both cases depend only poly-logarithmically on the ratio of the subdomain size to the mesh size. Key words. domain decomposition, Crouzeix-Raviart element, additive Schwarz method, finite volume element, GMRES AMS subject classifications. 65F10, 65N22, 65N30, 63N55</description><subject>Analysis</subject><subject>Finite element method</subject><subject>Iterative methods (Mathematics)</subject><issn>1068-9613</issn><issn>1097-4067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNptjk1LAzEQhhdRsFb_Q8BzZHZnN9scS6kfUBD8OJdsMmkju5uSpFX6643UgwfnPcww7_MOc1ZMSpAtr0G05z-zmHEpSrwsrmL8AChlXTWTYliaDfFORTLsVW8_VTiygdLWm8isDyxtiS2C3x_JffEXdXAqJGbd6BKxg-_3AzHqaaAxMeOiDpTcUSXnR-Ztdnq3S06zXfBdpuJ1cWFVH-nmt0-L9_vl2-KRr54fnhbzFd-UTZW4QW0aEFo2UkupQOYCtJZqKLOBVSWg0wgESJJmHShoWqMFaVDYIuC0uD3d3aie1m60PgWlh_zgel4j4qzBSmTq7h8qy9DgtB_Jurz_E_gGpJRmyA</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Loneland, Atle</creator><creator>Marcinkowski, Leszek</creator><creator>Rahman, Talal</creator><general>Institute of Computational Mathematics</general><scope/></search><sort><creationdate>20150101</creationdate><title>Edge-based Schwarz methods for the Crouzeix-Raviart finite volume element discretization of elliptic problems</title><author>Loneland, Atle ; Marcinkowski, Leszek ; Rahman, Talal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g152t-d3cd506c959c99a0999903ffe401d5032260bc30e03e9e8b0a057dc6ec0a37303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Analysis</topic><topic>Finite element method</topic><topic>Iterative methods (Mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loneland, Atle</creatorcontrib><creatorcontrib>Marcinkowski, Leszek</creatorcontrib><creatorcontrib>Rahman, Talal</creatorcontrib><jtitle>Electronic transactions on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loneland, Atle</au><au>Marcinkowski, Leszek</au><au>Rahman, Talal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Edge-based Schwarz methods for the Crouzeix-Raviart finite volume element discretization of elliptic problems</atitle><jtitle>Electronic transactions on numerical analysis</jtitle><date>2015-01-01</date><risdate>2015</risdate><spage>443</spage><pages>443-</pages><issn>1068-9613</issn><eissn>1097-4067</eissn><abstract>In this paper, we present two variants of the additive Schwarz method for a Crouzeix-Raviart finite volume element (CRFVE) discretization of second-order elliptic problems with discontinuous coefficients, where the discontinuities may be across subdomain boundaries. The preconditioner in one variant is symmetric, while in the other variant it is nonsymmetric. The proposed methods are quasi optimal, in the sense that the convergence of the preconditioned GMRES iteration in both cases depend only poly-logarithmically on the ratio of the subdomain size to the mesh size. Key words. domain decomposition, Crouzeix-Raviart element, additive Schwarz method, finite volume element, GMRES AMS subject classifications. 65F10, 65N22, 65N30, 63N55</abstract><pub>Institute of Computational Mathematics</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1068-9613 |
ispartof | Electronic transactions on numerical analysis, 2015-01, p.443 |
issn | 1068-9613 1097-4067 |
language | eng |
recordid | cdi_gale_infotracmisc_A433385326 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Analysis Finite element method Iterative methods (Mathematics) |
title | Edge-based Schwarz methods for the Crouzeix-Raviart finite volume element discretization of elliptic problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T19%3A37%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Edge-based%20Schwarz%20methods%20for%20the%20Crouzeix-Raviart%20finite%20volume%20element%20discretization%20of%20elliptic%20problems&rft.jtitle=Electronic%20transactions%20on%20numerical%20analysis&rft.au=Loneland,%20Atle&rft.date=2015-01-01&rft.spage=443&rft.pages=443-&rft.issn=1068-9613&rft.eissn=1097-4067&rft_id=info:doi/&rft_dat=%3Cgale%3EA433385326%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A433385326&rfr_iscdi=true |