Block Gram-Schmidt downdating
Given positive integers m, n, and p, where m [greater than or equal to] n + p and p ≪ n. A method is proposed to modify the QR decomposition of X ∈ [R.sup.mxn] to produce a QR decomposition of X with p rows deleted. The algorithm is based upon the classical block Gram-Schmidt method, requires an app...
Gespeichert in:
Veröffentlicht in: | Electronic transactions on numerical analysis 2014-12, Vol.43, p.163 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 163 |
container_title | Electronic transactions on numerical analysis |
container_volume | 43 |
creator | Barlow, Jesse L |
description | Given positive integers m, n, and p, where m [greater than or equal to] n + p and p ≪ n. A method is proposed to modify the QR decomposition of X ∈ [R.sup.mxn] to produce a QR decomposition of X with p rows deleted. The algorithm is based upon the classical block Gram-Schmidt method, requires an approximation of the norm of the inverse of a triangular matrix, has O(mnp) operations, and achieves an accuracy in the matrix 2-norm that is comparable to similar bounds for related procedures for p = 1 in the vector 2-norm. Since the algorithm is based upon matrix-matrix operations, it is appropriate for modern cache oriented computer architectures. Key words. QR decomposition, singular value decomposition, orthogonality, downdating, matrix-matrix operations. |
format | Article |
fullrecord | <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracmisc_A427421345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A427421345</galeid><sourcerecordid>A427421345</sourcerecordid><originalsourceid>FETCH-LOGICAL-g222t-d1f7d5f09d0e5b247c41dd9160d334ea7808f025825ec7508f066fc22c8a04a43</originalsourceid><addsrcrecordid>eNptTMtKAzEUDaJgbf0EoeA6cnNz85hlLdoKBRfadYm5yRidB3QG_H2n6MKFnMV5cM45EzMFlZME1p2ftPWyskpfiqth-ABQFaGZiZv7po-fy80xtPIlvreFxyX3Xx2HsXT1Qlzk0Azp-pfnYv_48Lreyt3z5mm92skaEUfJKjs2GSqGZN6QXCTFXCkLrDWl4Dz4DGg8mhSdORlrc0SMPgAF0nNx-_NbhyYdSpf78RhiW4Z4WBE6QqXJTK27f1oTOLUl9l3KZcr_DL4BWltH8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Block Gram-Schmidt downdating</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Barlow, Jesse L</creator><creatorcontrib>Barlow, Jesse L</creatorcontrib><description>Given positive integers m, n, and p, where m [greater than or equal to] n + p and p ≪ n. A method is proposed to modify the QR decomposition of X ∈ [R.sup.mxn] to produce a QR decomposition of X with p rows deleted. The algorithm is based upon the classical block Gram-Schmidt method, requires an approximation of the norm of the inverse of a triangular matrix, has O(mnp) operations, and achieves an accuracy in the matrix 2-norm that is comparable to similar bounds for related procedures for p = 1 in the vector 2-norm. Since the algorithm is based upon matrix-matrix operations, it is appropriate for modern cache oriented computer architectures. Key words. QR decomposition, singular value decomposition, orthogonality, downdating, matrix-matrix operations.</description><identifier>ISSN: 1068-9613</identifier><identifier>EISSN: 1097-4067</identifier><language>eng</language><publisher>Institute of Computational Mathematics</publisher><subject>Computer architecture ; Decomposition (Mathematics) ; Matrices</subject><ispartof>Electronic transactions on numerical analysis, 2014-12, Vol.43, p.163</ispartof><rights>COPYRIGHT 2014 Institute of Computational Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Barlow, Jesse L</creatorcontrib><title>Block Gram-Schmidt downdating</title><title>Electronic transactions on numerical analysis</title><description>Given positive integers m, n, and p, where m [greater than or equal to] n + p and p ≪ n. A method is proposed to modify the QR decomposition of X ∈ [R.sup.mxn] to produce a QR decomposition of X with p rows deleted. The algorithm is based upon the classical block Gram-Schmidt method, requires an approximation of the norm of the inverse of a triangular matrix, has O(mnp) operations, and achieves an accuracy in the matrix 2-norm that is comparable to similar bounds for related procedures for p = 1 in the vector 2-norm. Since the algorithm is based upon matrix-matrix operations, it is appropriate for modern cache oriented computer architectures. Key words. QR decomposition, singular value decomposition, orthogonality, downdating, matrix-matrix operations.</description><subject>Computer architecture</subject><subject>Decomposition (Mathematics)</subject><subject>Matrices</subject><issn>1068-9613</issn><issn>1097-4067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNptTMtKAzEUDaJgbf0EoeA6cnNz85hlLdoKBRfadYm5yRidB3QG_H2n6MKFnMV5cM45EzMFlZME1p2ftPWyskpfiqth-ABQFaGZiZv7po-fy80xtPIlvreFxyX3Xx2HsXT1Qlzk0Azp-pfnYv_48Lreyt3z5mm92skaEUfJKjs2GSqGZN6QXCTFXCkLrDWl4Dz4DGg8mhSdORlrc0SMPgAF0nNx-_NbhyYdSpf78RhiW4Z4WBE6QqXJTK27f1oTOLUl9l3KZcr_DL4BWltH8Q</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Barlow, Jesse L</creator><general>Institute of Computational Mathematics</general><scope/></search><sort><creationdate>20141201</creationdate><title>Block Gram-Schmidt downdating</title><author>Barlow, Jesse L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g222t-d1f7d5f09d0e5b247c41dd9160d334ea7808f025825ec7508f066fc22c8a04a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Computer architecture</topic><topic>Decomposition (Mathematics)</topic><topic>Matrices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barlow, Jesse L</creatorcontrib><jtitle>Electronic transactions on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barlow, Jesse L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Block Gram-Schmidt downdating</atitle><jtitle>Electronic transactions on numerical analysis</jtitle><date>2014-12-01</date><risdate>2014</risdate><volume>43</volume><spage>163</spage><pages>163-</pages><issn>1068-9613</issn><eissn>1097-4067</eissn><abstract>Given positive integers m, n, and p, where m [greater than or equal to] n + p and p ≪ n. A method is proposed to modify the QR decomposition of X ∈ [R.sup.mxn] to produce a QR decomposition of X with p rows deleted. The algorithm is based upon the classical block Gram-Schmidt method, requires an approximation of the norm of the inverse of a triangular matrix, has O(mnp) operations, and achieves an accuracy in the matrix 2-norm that is comparable to similar bounds for related procedures for p = 1 in the vector 2-norm. Since the algorithm is based upon matrix-matrix operations, it is appropriate for modern cache oriented computer architectures. Key words. QR decomposition, singular value decomposition, orthogonality, downdating, matrix-matrix operations.</abstract><pub>Institute of Computational Mathematics</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1068-9613 |
ispartof | Electronic transactions on numerical analysis, 2014-12, Vol.43, p.163 |
issn | 1068-9613 1097-4067 |
language | eng |
recordid | cdi_gale_infotracmisc_A427421345 |
source | EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Computer architecture Decomposition (Mathematics) Matrices |
title | Block Gram-Schmidt downdating |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T13%3A04%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Block%20Gram-Schmidt%20downdating&rft.jtitle=Electronic%20transactions%20on%20numerical%20analysis&rft.au=Barlow,%20Jesse%20L&rft.date=2014-12-01&rft.volume=43&rft.spage=163&rft.pages=163-&rft.issn=1068-9613&rft.eissn=1097-4067&rft_id=info:doi/&rft_dat=%3Cgale%3EA427421345%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A427421345&rfr_iscdi=true |