A Well-Posedness Framework for Inpainting Based on Coherence Transport
Image inpainting is the process of touching up damaged or unwanted portions of a picture and is an important task in image processing. For this purpose Bornemann and März (J Math Imaging Vision, 28:259–278, 2007 ) introduced a very efficient method, called image inpainting based on coherence transpo...
Gespeichert in:
Veröffentlicht in: | Foundations of computational mathematics 2015-08, Vol.15 (4), p.973-1033 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1033 |
---|---|
container_issue | 4 |
container_start_page | 973 |
container_title | Foundations of computational mathematics |
container_volume | 15 |
creator | März, Thomas |
description | Image inpainting is the process of touching up damaged or unwanted portions of a picture and is an important task in image processing. For this purpose Bornemann and März (J Math Imaging Vision, 28:259–278,
2007
) introduced a very efficient method, called
image inpainting based on coherence transport
, that fills the missing region by advecting the image information along integral curves of a coherence vector field from the boundary toward the interior of the hole. The mathematical model behind this method is a first-order functional advection partial differential equation posed on a compact domain with all inflow boundaries. We show that this problem is well posed under certain conditions. |
doi_str_mv | 10.1007/s10208-014-9199-7 |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracmisc_A422521305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A422521305</galeid><sourcerecordid>A422521305</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-f235b070d4ebdf5c6fd63300f907695736d11246fcdee8e7ed82afb1b39b0d2f3</originalsourceid><addsrcrecordid>eNp9kU1LAzEQhhdRsFZ_gLcFTx5SJ8l-dI-1WC0UFK14DNnNZN26TUqyRf33pqwIhSJzmGF4njnMG0WXFEYUIL_xFBiMCdCEFLQoSH4UDWhGU8L5mB__zXl6Gp15vwKgaUGTQTSbxG_YtuTJelQGvY9nTq7x07qPWFsXz81GNqZrTB3fyoDE1sRT-44OTYXx0knjN9Z159GJlq3Hi98-jF5nd8vpA1k83s-nkwWpkgw6ohlPS8hBJVgqnVaZVhnnALqAPCvSnGeKUpZkulKIY8xRjZnUJS15UYJimg-jq_5uLVsUjdG2c7JaN74Sk4SxlFEOaaDIAapGg0621qBuwnqPHx3gQylcN9VB4XpPCEyHX10tt96L-cvzPkt7tnLWe4dabFyzlu5bUBC77ESfnQjZiV12Ig8O6x0fWFOjEyu7dSZ89h_pB__omU8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Well-Posedness Framework for Inpainting Based on Coherence Transport</title><source>SpringerLink Journals</source><creator>März, Thomas</creator><creatorcontrib>März, Thomas</creatorcontrib><description>Image inpainting is the process of touching up damaged or unwanted portions of a picture and is an important task in image processing. For this purpose Bornemann and März (J Math Imaging Vision, 28:259–278,
2007
) introduced a very efficient method, called
image inpainting based on coherence transport
, that fills the missing region by advecting the image information along integral curves of a coherence vector field from the boundary toward the interior of the hole. The mathematical model behind this method is a first-order functional advection partial differential equation posed on a compact domain with all inflow boundaries. We show that this problem is well posed under certain conditions.</description><identifier>ISSN: 1615-3375</identifier><identifier>EISSN: 1615-3383</identifier><identifier>DOI: 10.1007/s10208-014-9199-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Applications of Mathematics ; Computer Science ; Economics ; Image processing ; Inverse functions ; Linear and Multilinear Algebras ; Math Applications in Computer Science ; Mathematical research ; Mathematics ; Mathematics and Statistics ; Matrix Theory ; Numerical Analysis</subject><ispartof>Foundations of computational mathematics, 2015-08, Vol.15 (4), p.973-1033</ispartof><rights>SFoCM 2014</rights><rights>COPYRIGHT 2015 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-f235b070d4ebdf5c6fd63300f907695736d11246fcdee8e7ed82afb1b39b0d2f3</citedby><cites>FETCH-LOGICAL-c460t-f235b070d4ebdf5c6fd63300f907695736d11246fcdee8e7ed82afb1b39b0d2f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10208-014-9199-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10208-014-9199-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>März, Thomas</creatorcontrib><title>A Well-Posedness Framework for Inpainting Based on Coherence Transport</title><title>Foundations of computational mathematics</title><addtitle>Found Comput Math</addtitle><description>Image inpainting is the process of touching up damaged or unwanted portions of a picture and is an important task in image processing. For this purpose Bornemann and März (J Math Imaging Vision, 28:259–278,
2007
) introduced a very efficient method, called
image inpainting based on coherence transport
, that fills the missing region by advecting the image information along integral curves of a coherence vector field from the boundary toward the interior of the hole. The mathematical model behind this method is a first-order functional advection partial differential equation posed on a compact domain with all inflow boundaries. We show that this problem is well posed under certain conditions.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Computer Science</subject><subject>Economics</subject><subject>Image processing</subject><subject>Inverse functions</subject><subject>Linear and Multilinear Algebras</subject><subject>Math Applications in Computer Science</subject><subject>Mathematical research</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrix Theory</subject><subject>Numerical Analysis</subject><issn>1615-3375</issn><issn>1615-3383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kU1LAzEQhhdRsFZ_gLcFTx5SJ8l-dI-1WC0UFK14DNnNZN26TUqyRf33pqwIhSJzmGF4njnMG0WXFEYUIL_xFBiMCdCEFLQoSH4UDWhGU8L5mB__zXl6Gp15vwKgaUGTQTSbxG_YtuTJelQGvY9nTq7x07qPWFsXz81GNqZrTB3fyoDE1sRT-44OTYXx0knjN9Z159GJlq3Hi98-jF5nd8vpA1k83s-nkwWpkgw6ohlPS8hBJVgqnVaZVhnnALqAPCvSnGeKUpZkulKIY8xRjZnUJS15UYJimg-jq_5uLVsUjdG2c7JaN74Sk4SxlFEOaaDIAapGg0621qBuwnqPHx3gQylcN9VB4XpPCEyHX10tt96L-cvzPkt7tnLWe4dabFyzlu5bUBC77ESfnQjZiV12Ig8O6x0fWFOjEyu7dSZ89h_pB__omU8</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>März, Thomas</creator><general>Springer US</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20150801</creationdate><title>A Well-Posedness Framework for Inpainting Based on Coherence Transport</title><author>März, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-f235b070d4ebdf5c6fd63300f907695736d11246fcdee8e7ed82afb1b39b0d2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Computer Science</topic><topic>Economics</topic><topic>Image processing</topic><topic>Inverse functions</topic><topic>Linear and Multilinear Algebras</topic><topic>Math Applications in Computer Science</topic><topic>Mathematical research</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrix Theory</topic><topic>Numerical Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>März, Thomas</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Foundations of computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>März, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Well-Posedness Framework for Inpainting Based on Coherence Transport</atitle><jtitle>Foundations of computational mathematics</jtitle><stitle>Found Comput Math</stitle><date>2015-08-01</date><risdate>2015</risdate><volume>15</volume><issue>4</issue><spage>973</spage><epage>1033</epage><pages>973-1033</pages><issn>1615-3375</issn><eissn>1615-3383</eissn><abstract>Image inpainting is the process of touching up damaged or unwanted portions of a picture and is an important task in image processing. For this purpose Bornemann and März (J Math Imaging Vision, 28:259–278,
2007
) introduced a very efficient method, called
image inpainting based on coherence transport
, that fills the missing region by advecting the image information along integral curves of a coherence vector field from the boundary toward the interior of the hole. The mathematical model behind this method is a first-order functional advection partial differential equation posed on a compact domain with all inflow boundaries. We show that this problem is well posed under certain conditions.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10208-014-9199-7</doi><tpages>61</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-3375 |
ispartof | Foundations of computational mathematics, 2015-08, Vol.15 (4), p.973-1033 |
issn | 1615-3375 1615-3383 |
language | eng |
recordid | cdi_gale_infotracmisc_A422521305 |
source | SpringerLink Journals |
subjects | Algorithms Applications of Mathematics Computer Science Economics Image processing Inverse functions Linear and Multilinear Algebras Math Applications in Computer Science Mathematical research Mathematics Mathematics and Statistics Matrix Theory Numerical Analysis |
title | A Well-Posedness Framework for Inpainting Based on Coherence Transport |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T01%3A53%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Well-Posedness%20Framework%20for%20Inpainting%20Based%20on%20Coherence%20Transport&rft.jtitle=Foundations%20of%20computational%20mathematics&rft.au=M%C3%A4rz,%20Thomas&rft.date=2015-08-01&rft.volume=15&rft.issue=4&rft.spage=973&rft.epage=1033&rft.pages=973-1033&rft.issn=1615-3375&rft.eissn=1615-3383&rft_id=info:doi/10.1007/s10208-014-9199-7&rft_dat=%3Cgale_cross%3EA422521305%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A422521305&rfr_iscdi=true |