A Well-Posedness Framework for Inpainting Based on Coherence Transport

Image inpainting is the process of touching up damaged or unwanted portions of a picture and is an important task in image processing. For this purpose Bornemann and März (J Math Imaging Vision, 28:259–278, 2007 ) introduced a very efficient method, called image inpainting based on coherence transpo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Foundations of computational mathematics 2015-08, Vol.15 (4), p.973-1033
1. Verfasser: März, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1033
container_issue 4
container_start_page 973
container_title Foundations of computational mathematics
container_volume 15
creator März, Thomas
description Image inpainting is the process of touching up damaged or unwanted portions of a picture and is an important task in image processing. For this purpose Bornemann and März (J Math Imaging Vision, 28:259–278, 2007 ) introduced a very efficient method, called image inpainting based on coherence transport , that fills the missing region by advecting the image information along integral curves of a coherence vector field from the boundary toward the interior of the hole. The mathematical model behind this method is a first-order functional advection partial differential equation posed on a compact domain with all inflow boundaries. We show that this problem is well posed under certain conditions.
doi_str_mv 10.1007/s10208-014-9199-7
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracmisc_A422521305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A422521305</galeid><sourcerecordid>A422521305</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-f235b070d4ebdf5c6fd63300f907695736d11246fcdee8e7ed82afb1b39b0d2f3</originalsourceid><addsrcrecordid>eNp9kU1LAzEQhhdRsFZ_gLcFTx5SJ8l-dI-1WC0UFK14DNnNZN26TUqyRf33pqwIhSJzmGF4njnMG0WXFEYUIL_xFBiMCdCEFLQoSH4UDWhGU8L5mB__zXl6Gp15vwKgaUGTQTSbxG_YtuTJelQGvY9nTq7x07qPWFsXz81GNqZrTB3fyoDE1sRT-44OTYXx0knjN9Z159GJlq3Hi98-jF5nd8vpA1k83s-nkwWpkgw6ohlPS8hBJVgqnVaZVhnnALqAPCvSnGeKUpZkulKIY8xRjZnUJS15UYJimg-jq_5uLVsUjdG2c7JaN74Sk4SxlFEOaaDIAapGg0621qBuwnqPHx3gQylcN9VB4XpPCEyHX10tt96L-cvzPkt7tnLWe4dabFyzlu5bUBC77ESfnQjZiV12Ig8O6x0fWFOjEyu7dSZ89h_pB__omU8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Well-Posedness Framework for Inpainting Based on Coherence Transport</title><source>SpringerLink Journals</source><creator>März, Thomas</creator><creatorcontrib>März, Thomas</creatorcontrib><description>Image inpainting is the process of touching up damaged or unwanted portions of a picture and is an important task in image processing. For this purpose Bornemann and März (J Math Imaging Vision, 28:259–278, 2007 ) introduced a very efficient method, called image inpainting based on coherence transport , that fills the missing region by advecting the image information along integral curves of a coherence vector field from the boundary toward the interior of the hole. The mathematical model behind this method is a first-order functional advection partial differential equation posed on a compact domain with all inflow boundaries. We show that this problem is well posed under certain conditions.</description><identifier>ISSN: 1615-3375</identifier><identifier>EISSN: 1615-3383</identifier><identifier>DOI: 10.1007/s10208-014-9199-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Applications of Mathematics ; Computer Science ; Economics ; Image processing ; Inverse functions ; Linear and Multilinear Algebras ; Math Applications in Computer Science ; Mathematical research ; Mathematics ; Mathematics and Statistics ; Matrix Theory ; Numerical Analysis</subject><ispartof>Foundations of computational mathematics, 2015-08, Vol.15 (4), p.973-1033</ispartof><rights>SFoCM 2014</rights><rights>COPYRIGHT 2015 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-f235b070d4ebdf5c6fd63300f907695736d11246fcdee8e7ed82afb1b39b0d2f3</citedby><cites>FETCH-LOGICAL-c460t-f235b070d4ebdf5c6fd63300f907695736d11246fcdee8e7ed82afb1b39b0d2f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10208-014-9199-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10208-014-9199-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>März, Thomas</creatorcontrib><title>A Well-Posedness Framework for Inpainting Based on Coherence Transport</title><title>Foundations of computational mathematics</title><addtitle>Found Comput Math</addtitle><description>Image inpainting is the process of touching up damaged or unwanted portions of a picture and is an important task in image processing. For this purpose Bornemann and März (J Math Imaging Vision, 28:259–278, 2007 ) introduced a very efficient method, called image inpainting based on coherence transport , that fills the missing region by advecting the image information along integral curves of a coherence vector field from the boundary toward the interior of the hole. The mathematical model behind this method is a first-order functional advection partial differential equation posed on a compact domain with all inflow boundaries. We show that this problem is well posed under certain conditions.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Computer Science</subject><subject>Economics</subject><subject>Image processing</subject><subject>Inverse functions</subject><subject>Linear and Multilinear Algebras</subject><subject>Math Applications in Computer Science</subject><subject>Mathematical research</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrix Theory</subject><subject>Numerical Analysis</subject><issn>1615-3375</issn><issn>1615-3383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kU1LAzEQhhdRsFZ_gLcFTx5SJ8l-dI-1WC0UFK14DNnNZN26TUqyRf33pqwIhSJzmGF4njnMG0WXFEYUIL_xFBiMCdCEFLQoSH4UDWhGU8L5mB__zXl6Gp15vwKgaUGTQTSbxG_YtuTJelQGvY9nTq7x07qPWFsXz81GNqZrTB3fyoDE1sRT-44OTYXx0knjN9Z159GJlq3Hi98-jF5nd8vpA1k83s-nkwWpkgw6ohlPS8hBJVgqnVaZVhnnALqAPCvSnGeKUpZkulKIY8xRjZnUJS15UYJimg-jq_5uLVsUjdG2c7JaN74Sk4SxlFEOaaDIAapGg0621qBuwnqPHx3gQylcN9VB4XpPCEyHX10tt96L-cvzPkt7tnLWe4dabFyzlu5bUBC77ESfnQjZiV12Ig8O6x0fWFOjEyu7dSZ89h_pB__omU8</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>März, Thomas</creator><general>Springer US</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20150801</creationdate><title>A Well-Posedness Framework for Inpainting Based on Coherence Transport</title><author>März, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-f235b070d4ebdf5c6fd63300f907695736d11246fcdee8e7ed82afb1b39b0d2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Computer Science</topic><topic>Economics</topic><topic>Image processing</topic><topic>Inverse functions</topic><topic>Linear and Multilinear Algebras</topic><topic>Math Applications in Computer Science</topic><topic>Mathematical research</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrix Theory</topic><topic>Numerical Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>März, Thomas</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Foundations of computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>März, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Well-Posedness Framework for Inpainting Based on Coherence Transport</atitle><jtitle>Foundations of computational mathematics</jtitle><stitle>Found Comput Math</stitle><date>2015-08-01</date><risdate>2015</risdate><volume>15</volume><issue>4</issue><spage>973</spage><epage>1033</epage><pages>973-1033</pages><issn>1615-3375</issn><eissn>1615-3383</eissn><abstract>Image inpainting is the process of touching up damaged or unwanted portions of a picture and is an important task in image processing. For this purpose Bornemann and März (J Math Imaging Vision, 28:259–278, 2007 ) introduced a very efficient method, called image inpainting based on coherence transport , that fills the missing region by advecting the image information along integral curves of a coherence vector field from the boundary toward the interior of the hole. The mathematical model behind this method is a first-order functional advection partial differential equation posed on a compact domain with all inflow boundaries. We show that this problem is well posed under certain conditions.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10208-014-9199-7</doi><tpages>61</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1615-3375
ispartof Foundations of computational mathematics, 2015-08, Vol.15 (4), p.973-1033
issn 1615-3375
1615-3383
language eng
recordid cdi_gale_infotracmisc_A422521305
source SpringerLink Journals
subjects Algorithms
Applications of Mathematics
Computer Science
Economics
Image processing
Inverse functions
Linear and Multilinear Algebras
Math Applications in Computer Science
Mathematical research
Mathematics
Mathematics and Statistics
Matrix Theory
Numerical Analysis
title A Well-Posedness Framework for Inpainting Based on Coherence Transport
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T01%3A53%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Well-Posedness%20Framework%20for%20Inpainting%20Based%20on%20Coherence%20Transport&rft.jtitle=Foundations%20of%20computational%20mathematics&rft.au=M%C3%A4rz,%20Thomas&rft.date=2015-08-01&rft.volume=15&rft.issue=4&rft.spage=973&rft.epage=1033&rft.pages=973-1033&rft.issn=1615-3375&rft.eissn=1615-3383&rft_id=info:doi/10.1007/s10208-014-9199-7&rft_dat=%3Cgale_cross%3EA422521305%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A422521305&rfr_iscdi=true