Nested spline–wavelet decompositions

We consider conditions for embedding of (generally speaking, discontinuous and nonpolynomial) spline spaces obtained by a removal of grid points (nests). For such spaces we present the wavelet decomposition, construct the embedding and extension matrices, and derive the corresponding decomposition a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2012-07, Vol.184 (3), p.282-294
Hauptverfasser: Dem’yanovich, Yu. K., Miroshnichenko, I. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 294
container_issue 3
container_start_page 282
container_title Journal of mathematical sciences (New York, N.Y.)
container_volume 184
creator Dem’yanovich, Yu. K.
Miroshnichenko, I. D.
description We consider conditions for embedding of (generally speaking, discontinuous and nonpolynomial) spline spaces obtained by a removal of grid points (nests). For such spaces we present the wavelet decomposition, construct the embedding and extension matrices, and derive the corresponding decomposition and reconstruction formulas. We also consider the decomposition and restoration operators in spaces of finite sequences (flows). Bibliography: 1 title.
doi_str_mv 10.1007/s10958-012-0868-2
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracmisc_A380946394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A380946394</galeid><sourcerecordid>A380946394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2942-1929123cb0f81f002adf55744ffb0c5c6bdb57d3622c4f48108c6c558907f2693</originalsourceid><addsrcrecordid>eNp9kctKAzEUhoMoWKsP4K4gCC5Sc5lMkmUpXgpFwcs6ZDLJkDKXkky97HwH39AnMWXcFIqcxTkcvu8szg_AOUZTjBC_jhhJJiDCBCKRC0gOwAgzTqHgkh2mGXECKeXZMTiJcYWSkws6ApcPNva2nMR17Vv78_X9rt9sbftJaU3XrLvoe9-18RQcOV1He_bXx-D19uZlfg-Xj3eL-WwJDZEZgVgSiQk1BXICO4SILh1jPMucK5BhJi_KgvGS5oSYzGUCI2Fyw5iQiDuSSzoGF8PdStdW-dZ1fdCm8dGoGRVIZjmVWaLgHqqyrQ267lrrfFrv8NM9fKrSNt7sFa52hMT09qOv9CZGtXh-2mXxwJrQxRisU-vgGx0-FUZqm40aslEpG7XNRpHkkMGJiW0rG9Sq24Q2ffYf6Rfc845w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nested spline–wavelet decompositions</title><source>SpringerNature Journals</source><creator>Dem’yanovich, Yu. K. ; Miroshnichenko, I. D.</creator><creatorcontrib>Dem’yanovich, Yu. K. ; Miroshnichenko, I. D.</creatorcontrib><description>We consider conditions for embedding of (generally speaking, discontinuous and nonpolynomial) spline spaces obtained by a removal of grid points (nests). For such spaces we present the wavelet decomposition, construct the embedding and extension matrices, and derive the corresponding decomposition and reconstruction formulas. We also consider the decomposition and restoration operators in spaces of finite sequences (flows). Bibliography: 1 title.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-012-0868-2</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Mathematics ; Mathematics and Statistics</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2012-07, Vol.184 (3), p.282-294</ispartof><rights>Springer Science+Business Media, Inc. 2012</rights><rights>COPYRIGHT 2012 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2942-1929123cb0f81f002adf55744ffb0c5c6bdb57d3622c4f48108c6c558907f2693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-012-0868-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-012-0868-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Dem’yanovich, Yu. K.</creatorcontrib><creatorcontrib>Miroshnichenko, I. D.</creatorcontrib><title>Nested spline–wavelet decompositions</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>We consider conditions for embedding of (generally speaking, discontinuous and nonpolynomial) spline spaces obtained by a removal of grid points (nests). For such spaces we present the wavelet decomposition, construct the embedding and extension matrices, and derive the corresponding decomposition and reconstruction formulas. We also consider the decomposition and restoration operators in spaces of finite sequences (flows). Bibliography: 1 title.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kctKAzEUhoMoWKsP4K4gCC5Sc5lMkmUpXgpFwcs6ZDLJkDKXkky97HwH39AnMWXcFIqcxTkcvu8szg_AOUZTjBC_jhhJJiDCBCKRC0gOwAgzTqHgkh2mGXECKeXZMTiJcYWSkws6ApcPNva2nMR17Vv78_X9rt9sbftJaU3XrLvoe9-18RQcOV1He_bXx-D19uZlfg-Xj3eL-WwJDZEZgVgSiQk1BXICO4SILh1jPMucK5BhJi_KgvGS5oSYzGUCI2Fyw5iQiDuSSzoGF8PdStdW-dZ1fdCm8dGoGRVIZjmVWaLgHqqyrQ267lrrfFrv8NM9fKrSNt7sFa52hMT09qOv9CZGtXh-2mXxwJrQxRisU-vgGx0-FUZqm40aslEpG7XNRpHkkMGJiW0rG9Sq24Q2ffYf6Rfc845w</recordid><startdate>20120704</startdate><enddate>20120704</enddate><creator>Dem’yanovich, Yu. K.</creator><creator>Miroshnichenko, I. D.</creator><general>Springer US</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20120704</creationdate><title>Nested spline–wavelet decompositions</title><author>Dem’yanovich, Yu. K. ; Miroshnichenko, I. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2942-1929123cb0f81f002adf55744ffb0c5c6bdb57d3622c4f48108c6c558907f2693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dem’yanovich, Yu. K.</creatorcontrib><creatorcontrib>Miroshnichenko, I. D.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dem’yanovich, Yu. K.</au><au>Miroshnichenko, I. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nested spline–wavelet decompositions</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2012-07-04</date><risdate>2012</risdate><volume>184</volume><issue>3</issue><spage>282</spage><epage>294</epage><pages>282-294</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>We consider conditions for embedding of (generally speaking, discontinuous and nonpolynomial) spline spaces obtained by a removal of grid points (nests). For such spaces we present the wavelet decomposition, construct the embedding and extension matrices, and derive the corresponding decomposition and reconstruction formulas. We also consider the decomposition and restoration operators in spaces of finite sequences (flows). Bibliography: 1 title.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10958-012-0868-2</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1072-3374
ispartof Journal of mathematical sciences (New York, N.Y.), 2012-07, Vol.184 (3), p.282-294
issn 1072-3374
1573-8795
language eng
recordid cdi_gale_infotracmisc_A380946394
source SpringerNature Journals
subjects Mathematics
Mathematics and Statistics
title Nested spline–wavelet decompositions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A00%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nested%20spline%E2%80%93wavelet%20decompositions&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Dem%E2%80%99yanovich,%20Yu.%20K.&rft.date=2012-07-04&rft.volume=184&rft.issue=3&rft.spage=282&rft.epage=294&rft.pages=282-294&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-012-0868-2&rft_dat=%3Cgale_cross%3EA380946394%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A380946394&rfr_iscdi=true