Nested spline–wavelet decompositions
We consider conditions for embedding of (generally speaking, discontinuous and nonpolynomial) spline spaces obtained by a removal of grid points (nests). For such spaces we present the wavelet decomposition, construct the embedding and extension matrices, and derive the corresponding decomposition a...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2012-07, Vol.184 (3), p.282-294 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 294 |
---|---|
container_issue | 3 |
container_start_page | 282 |
container_title | Journal of mathematical sciences (New York, N.Y.) |
container_volume | 184 |
creator | Dem’yanovich, Yu. K. Miroshnichenko, I. D. |
description | We consider conditions for embedding of (generally speaking, discontinuous and nonpolynomial) spline spaces obtained by a removal of grid points (nests). For such spaces we present the wavelet decomposition, construct the embedding and extension matrices, and derive the corresponding decomposition and reconstruction formulas. We also consider the decomposition and restoration operators in spaces of finite sequences (flows). Bibliography: 1 title. |
doi_str_mv | 10.1007/s10958-012-0868-2 |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracmisc_A380946394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A380946394</galeid><sourcerecordid>A380946394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2942-1929123cb0f81f002adf55744ffb0c5c6bdb57d3622c4f48108c6c558907f2693</originalsourceid><addsrcrecordid>eNp9kctKAzEUhoMoWKsP4K4gCC5Sc5lMkmUpXgpFwcs6ZDLJkDKXkky97HwH39AnMWXcFIqcxTkcvu8szg_AOUZTjBC_jhhJJiDCBCKRC0gOwAgzTqHgkh2mGXECKeXZMTiJcYWSkws6ApcPNva2nMR17Vv78_X9rt9sbftJaU3XrLvoe9-18RQcOV1He_bXx-D19uZlfg-Xj3eL-WwJDZEZgVgSiQk1BXICO4SILh1jPMucK5BhJi_KgvGS5oSYzGUCI2Fyw5iQiDuSSzoGF8PdStdW-dZ1fdCm8dGoGRVIZjmVWaLgHqqyrQ267lrrfFrv8NM9fKrSNt7sFa52hMT09qOv9CZGtXh-2mXxwJrQxRisU-vgGx0-FUZqm40aslEpG7XNRpHkkMGJiW0rG9Sq24Q2ffYf6Rfc845w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nested spline–wavelet decompositions</title><source>SpringerNature Journals</source><creator>Dem’yanovich, Yu. K. ; Miroshnichenko, I. D.</creator><creatorcontrib>Dem’yanovich, Yu. K. ; Miroshnichenko, I. D.</creatorcontrib><description>We consider conditions for embedding of (generally speaking, discontinuous and nonpolynomial) spline spaces obtained by a removal of grid points (nests). For such spaces we present the wavelet decomposition, construct the embedding and extension matrices, and derive the corresponding decomposition and reconstruction formulas. We also consider the decomposition and restoration operators in spaces of finite sequences (flows). Bibliography: 1 title.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-012-0868-2</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Mathematics ; Mathematics and Statistics</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2012-07, Vol.184 (3), p.282-294</ispartof><rights>Springer Science+Business Media, Inc. 2012</rights><rights>COPYRIGHT 2012 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2942-1929123cb0f81f002adf55744ffb0c5c6bdb57d3622c4f48108c6c558907f2693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-012-0868-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-012-0868-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Dem’yanovich, Yu. K.</creatorcontrib><creatorcontrib>Miroshnichenko, I. D.</creatorcontrib><title>Nested spline–wavelet decompositions</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>We consider conditions for embedding of (generally speaking, discontinuous and nonpolynomial) spline spaces obtained by a removal of grid points (nests). For such spaces we present the wavelet decomposition, construct the embedding and extension matrices, and derive the corresponding decomposition and reconstruction formulas. We also consider the decomposition and restoration operators in spaces of finite sequences (flows). Bibliography: 1 title.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kctKAzEUhoMoWKsP4K4gCC5Sc5lMkmUpXgpFwcs6ZDLJkDKXkky97HwH39AnMWXcFIqcxTkcvu8szg_AOUZTjBC_jhhJJiDCBCKRC0gOwAgzTqHgkh2mGXECKeXZMTiJcYWSkws6ApcPNva2nMR17Vv78_X9rt9sbftJaU3XrLvoe9-18RQcOV1He_bXx-D19uZlfg-Xj3eL-WwJDZEZgVgSiQk1BXICO4SILh1jPMucK5BhJi_KgvGS5oSYzGUCI2Fyw5iQiDuSSzoGF8PdStdW-dZ1fdCm8dGoGRVIZjmVWaLgHqqyrQ267lrrfFrv8NM9fKrSNt7sFa52hMT09qOv9CZGtXh-2mXxwJrQxRisU-vgGx0-FUZqm40aslEpG7XNRpHkkMGJiW0rG9Sq24Q2ffYf6Rfc845w</recordid><startdate>20120704</startdate><enddate>20120704</enddate><creator>Dem’yanovich, Yu. K.</creator><creator>Miroshnichenko, I. D.</creator><general>Springer US</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20120704</creationdate><title>Nested spline–wavelet decompositions</title><author>Dem’yanovich, Yu. K. ; Miroshnichenko, I. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2942-1929123cb0f81f002adf55744ffb0c5c6bdb57d3622c4f48108c6c558907f2693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dem’yanovich, Yu. K.</creatorcontrib><creatorcontrib>Miroshnichenko, I. D.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dem’yanovich, Yu. K.</au><au>Miroshnichenko, I. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nested spline–wavelet decompositions</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2012-07-04</date><risdate>2012</risdate><volume>184</volume><issue>3</issue><spage>282</spage><epage>294</epage><pages>282-294</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>We consider conditions for embedding of (generally speaking, discontinuous and nonpolynomial) spline spaces obtained by a removal of grid points (nests). For such spaces we present the wavelet decomposition, construct the embedding and extension matrices, and derive the corresponding decomposition and reconstruction formulas. We also consider the decomposition and restoration operators in spaces of finite sequences (flows). Bibliography: 1 title.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10958-012-0868-2</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-3374 |
ispartof | Journal of mathematical sciences (New York, N.Y.), 2012-07, Vol.184 (3), p.282-294 |
issn | 1072-3374 1573-8795 |
language | eng |
recordid | cdi_gale_infotracmisc_A380946394 |
source | SpringerNature Journals |
subjects | Mathematics Mathematics and Statistics |
title | Nested spline–wavelet decompositions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A00%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nested%20spline%E2%80%93wavelet%20decompositions&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Dem%E2%80%99yanovich,%20Yu.%20K.&rft.date=2012-07-04&rft.volume=184&rft.issue=3&rft.spage=282&rft.epage=294&rft.pages=282-294&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-012-0868-2&rft_dat=%3Cgale_cross%3EA380946394%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A380946394&rfr_iscdi=true |