Hölder continuity of solutions of parabolic equations with variable nonlinearity exponent
In this paper, we prove the Hölder continuity of solutions of parabolic equations containing the p ( x, t )-Laplacian. The degree p must satisfy the so-called logarithmic condition.
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2011-12, Vol.179 (3), p.347-389 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 389 |
---|---|
container_issue | 3 |
container_start_page | 347 |
container_title | Journal of mathematical sciences (New York, N.Y.) |
container_volume | 179 |
creator | Alkhutov, Yu. A. Zhikov, V. V. |
description | In this paper, we prove the Hölder continuity of solutions of parabolic equations containing the
p
(
x, t
)-Laplacian. The degree
p
must satisfy the so-called logarithmic condition. |
doi_str_mv | 10.1007/s10958-011-0599-9 |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracmisc_A377920954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A377920954</galeid><sourcerecordid>A377920954</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3429-6c7e5ce85e6c4a4137c21ed08f0e88236042d24d390f2b78ae51f6e8c276684e3</originalsourceid><addsrcrecordid>eNp9kctKAzEUhgdRUKsP4G7AlYvUXGYmyVJErVAQvGzchDRzpkamSU1mtH0xX8AXM2XcFIpkkZzD9x3C-bPsjOAxwZhfRoJlKRAmBOFSSiT3siNScoYEl-V-emNOEWO8OMyOY3zHyakEO8peJz_fbQ0hN9511vW2W-e-yaNv-856FzfFUgc98601OXz0emh_2e4t_9TB6lkLufOutQ5SmXRYLb0D151kB41uI5z-3aPs5fbm-XqCpg9399dXU2RYQSWqDIfSgCihMoUuCOOGEqixaDAIQVmFC1rTomYSN3TGhYaSNBUIQ3lViQLYKDsf5s51C8q6xndBm4WNRl0xziVNmykShXZQc3AQdJv-29jU3uLHO_h0alhYs1O42BI2C4VVN9d9jOr-6XGbJQNrgo8xQKOWwS50WCuC1SZPNeSpUp5qk6eSyaGDExPr5hDUu--DS5v9R_oF_saimw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hölder continuity of solutions of parabolic equations with variable nonlinearity exponent</title><source>SpringerLink Journals</source><creator>Alkhutov, Yu. A. ; Zhikov, V. V.</creator><creatorcontrib>Alkhutov, Yu. A. ; Zhikov, V. V.</creatorcontrib><description>In this paper, we prove the Hölder continuity of solutions of parabolic equations containing the
p
(
x, t
)-Laplacian. The degree
p
must satisfy the so-called logarithmic condition.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-011-0599-9</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Mathematics ; Mathematics and Statistics</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2011-12, Vol.179 (3), p.347-389</ispartof><rights>Springer Science+Business Media, Inc. 2011</rights><rights>COPYRIGHT 2011 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3429-6c7e5ce85e6c4a4137c21ed08f0e88236042d24d390f2b78ae51f6e8c276684e3</citedby><cites>FETCH-LOGICAL-c3429-6c7e5ce85e6c4a4137c21ed08f0e88236042d24d390f2b78ae51f6e8c276684e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-011-0599-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-011-0599-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Alkhutov, Yu. A.</creatorcontrib><creatorcontrib>Zhikov, V. V.</creatorcontrib><title>Hölder continuity of solutions of parabolic equations with variable nonlinearity exponent</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>In this paper, we prove the Hölder continuity of solutions of parabolic equations containing the
p
(
x, t
)-Laplacian. The degree
p
must satisfy the so-called logarithmic condition.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kctKAzEUhgdRUKsP4G7AlYvUXGYmyVJErVAQvGzchDRzpkamSU1mtH0xX8AXM2XcFIpkkZzD9x3C-bPsjOAxwZhfRoJlKRAmBOFSSiT3siNScoYEl-V-emNOEWO8OMyOY3zHyakEO8peJz_fbQ0hN9511vW2W-e-yaNv-856FzfFUgc98601OXz0emh_2e4t_9TB6lkLufOutQ5SmXRYLb0D151kB41uI5z-3aPs5fbm-XqCpg9399dXU2RYQSWqDIfSgCihMoUuCOOGEqixaDAIQVmFC1rTomYSN3TGhYaSNBUIQ3lViQLYKDsf5s51C8q6xndBm4WNRl0xziVNmykShXZQc3AQdJv-29jU3uLHO_h0alhYs1O42BI2C4VVN9d9jOr-6XGbJQNrgo8xQKOWwS50WCuC1SZPNeSpUp5qk6eSyaGDExPr5hDUu--DS5v9R_oF_saimw</recordid><startdate>201112</startdate><enddate>201112</enddate><creator>Alkhutov, Yu. A.</creator><creator>Zhikov, V. V.</creator><general>Springer US</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>201112</creationdate><title>Hölder continuity of solutions of parabolic equations with variable nonlinearity exponent</title><author>Alkhutov, Yu. A. ; Zhikov, V. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3429-6c7e5ce85e6c4a4137c21ed08f0e88236042d24d390f2b78ae51f6e8c276684e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alkhutov, Yu. A.</creatorcontrib><creatorcontrib>Zhikov, V. V.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alkhutov, Yu. A.</au><au>Zhikov, V. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hölder continuity of solutions of parabolic equations with variable nonlinearity exponent</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2011-12</date><risdate>2011</risdate><volume>179</volume><issue>3</issue><spage>347</spage><epage>389</epage><pages>347-389</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>In this paper, we prove the Hölder continuity of solutions of parabolic equations containing the
p
(
x, t
)-Laplacian. The degree
p
must satisfy the so-called logarithmic condition.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10958-011-0599-9</doi><tpages>43</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-3374 |
ispartof | Journal of mathematical sciences (New York, N.Y.), 2011-12, Vol.179 (3), p.347-389 |
issn | 1072-3374 1573-8795 |
language | eng |
recordid | cdi_gale_infotracmisc_A377920954 |
source | SpringerLink Journals |
subjects | Mathematics Mathematics and Statistics |
title | Hölder continuity of solutions of parabolic equations with variable nonlinearity exponent |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A31%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=H%C3%B6lder%20continuity%20of%20solutions%20of%20parabolic%20equations%20with%20variable%20nonlinearity%20exponent&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Alkhutov,%20Yu.%20A.&rft.date=2011-12&rft.volume=179&rft.issue=3&rft.spage=347&rft.epage=389&rft.pages=347-389&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-011-0599-9&rft_dat=%3Cgale_cross%3EA377920954%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A377920954&rfr_iscdi=true |