The periodic unfolding method for a class of imperfect transmission problems
The periodic unfolding method was introduced by D. Cioranescu, A. Damlamian and G. Griso for studying the classical periodic homogenization in fixed domains and more recently extended to periodically perforated domains by D. Cioranescu, A. Damlamian, P. Donato, G. Griso, and R. Zaki. Here, the metho...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2011-08, Vol.176 (6), p.891-927 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 927 |
---|---|
container_issue | 6 |
container_start_page | 891 |
container_title | Journal of mathematical sciences (New York, N.Y.) |
container_volume | 176 |
creator | Donato, P. Le Nguyen, K. H. Tardieu, R. |
description | The periodic unfolding method was introduced by D. Cioranescu, A. Damlamian and G. Griso for studying the classical periodic homogenization in fixed domains and more recently extended to periodically perforated domains by D. Cioranescu, A. Damlamian, P. Donato, G. Griso, and R. Zaki. Here, the method is adapted to two-component domains which are separated by a periodic interface. The unfolding method is then applied to an elliptic problem with a jump of the solution on the interface, which is proportional to the flux and depends on a real parameter. We prove some homogenization and corrector results, which recover and complete those previously obtained by the first author and S. Monsurr`o. Bibliography: 32 titles. Illustrations: 2 figures. |
doi_str_mv | 10.1007/s10958-011-0443-2 |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracmisc_A377290171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A377290171</galeid><sourcerecordid>A377290171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3852-823638fdbad712292229fe5fdb17af9ec11d9a5d1c97492775c3ac6c227712e83</originalsourceid><addsrcrecordid>eNp9kU1LAzEQhhdRsFZ_gLeAJw-p-dhtdo-l-FEoCFrPIc1Otim7m5JsQf-9U-qlUCSEDMPzDEPeLLvnbMIZU0-Js6ooKeOcsjyXVFxkI14oSUtVFZdYMyWolCq_zm5S2jJ0pqUcZcvVBsgOog-1t2Tfu9DWvm9IB8Mm1MSFSAyxrUmJBEd8h6gDO5Ahmj51PiUferKLYd1Cl26zK2faBHd_7zj7enlezd_o8v11MZ8tqZVlIWgp5FSWrl6bWnEhKoHXQYENroyrwHJeV6aoua1UXgmlCiuNnVqBJRdQynH2cJzbmBa0x6VxHYvbWD2TSomKccWRomeoBnqIpg09OI_tE35yhsdTQ-ftWeHxREBmgO-hMfuU9OLz45TlR9bGkFIEp3fRdyb-aM70IUF9TFBjgvqQoBboiKOTkO0biHob9rHHn_1H-gWu-5uI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The periodic unfolding method for a class of imperfect transmission problems</title><source>SpringerLink Journals - AutoHoldings</source><creator>Donato, P. ; Le Nguyen, K. H. ; Tardieu, R.</creator><creatorcontrib>Donato, P. ; Le Nguyen, K. H. ; Tardieu, R.</creatorcontrib><description>The periodic unfolding method was introduced by D. Cioranescu, A. Damlamian and G. Griso for studying the classical periodic homogenization in fixed domains and more recently extended to periodically perforated domains by D. Cioranescu, A. Damlamian, P. Donato, G. Griso, and R. Zaki. Here, the method is adapted to two-component domains which are separated by a periodic interface. The unfolding method is then applied to an elliptic problem with a jump of the solution on the interface, which is proportional to the flux and depends on a real parameter. We prove some homogenization and corrector results, which recover and complete those previously obtained by the first author and S. Monsurr`o. Bibliography: 32 titles. Illustrations: 2 figures.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-011-0443-2</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Mathematics ; Mathematics and Statistics</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2011-08, Vol.176 (6), p.891-927</ispartof><rights>Springer Science+Business Media, Inc. 2011</rights><rights>COPYRIGHT 2011 Springer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3852-823638fdbad712292229fe5fdb17af9ec11d9a5d1c97492775c3ac6c227712e83</citedby><cites>FETCH-LOGICAL-c3852-823638fdbad712292229fe5fdb17af9ec11d9a5d1c97492775c3ac6c227712e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-011-0443-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-011-0443-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Donato, P.</creatorcontrib><creatorcontrib>Le Nguyen, K. H.</creatorcontrib><creatorcontrib>Tardieu, R.</creatorcontrib><title>The periodic unfolding method for a class of imperfect transmission problems</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>The periodic unfolding method was introduced by D. Cioranescu, A. Damlamian and G. Griso for studying the classical periodic homogenization in fixed domains and more recently extended to periodically perforated domains by D. Cioranescu, A. Damlamian, P. Donato, G. Griso, and R. Zaki. Here, the method is adapted to two-component domains which are separated by a periodic interface. The unfolding method is then applied to an elliptic problem with a jump of the solution on the interface, which is proportional to the flux and depends on a real parameter. We prove some homogenization and corrector results, which recover and complete those previously obtained by the first author and S. Monsurr`o. Bibliography: 32 titles. Illustrations: 2 figures.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kU1LAzEQhhdRsFZ_gLeAJw-p-dhtdo-l-FEoCFrPIc1Otim7m5JsQf-9U-qlUCSEDMPzDEPeLLvnbMIZU0-Js6ooKeOcsjyXVFxkI14oSUtVFZdYMyWolCq_zm5S2jJ0pqUcZcvVBsgOog-1t2Tfu9DWvm9IB8Mm1MSFSAyxrUmJBEd8h6gDO5Ahmj51PiUferKLYd1Cl26zK2faBHd_7zj7enlezd_o8v11MZ8tqZVlIWgp5FSWrl6bWnEhKoHXQYENroyrwHJeV6aoua1UXgmlCiuNnVqBJRdQynH2cJzbmBa0x6VxHYvbWD2TSomKccWRomeoBnqIpg09OI_tE35yhsdTQ-ftWeHxREBmgO-hMfuU9OLz45TlR9bGkFIEp3fRdyb-aM70IUF9TFBjgvqQoBboiKOTkO0biHob9rHHn_1H-gWu-5uI</recordid><startdate>20110803</startdate><enddate>20110803</enddate><creator>Donato, P.</creator><creator>Le Nguyen, K. H.</creator><creator>Tardieu, R.</creator><general>Springer US</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20110803</creationdate><title>The periodic unfolding method for a class of imperfect transmission problems</title><author>Donato, P. ; Le Nguyen, K. H. ; Tardieu, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3852-823638fdbad712292229fe5fdb17af9ec11d9a5d1c97492775c3ac6c227712e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Donato, P.</creatorcontrib><creatorcontrib>Le Nguyen, K. H.</creatorcontrib><creatorcontrib>Tardieu, R.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Donato, P.</au><au>Le Nguyen, K. H.</au><au>Tardieu, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The periodic unfolding method for a class of imperfect transmission problems</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2011-08-03</date><risdate>2011</risdate><volume>176</volume><issue>6</issue><spage>891</spage><epage>927</epage><pages>891-927</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>The periodic unfolding method was introduced by D. Cioranescu, A. Damlamian and G. Griso for studying the classical periodic homogenization in fixed domains and more recently extended to periodically perforated domains by D. Cioranescu, A. Damlamian, P. Donato, G. Griso, and R. Zaki. Here, the method is adapted to two-component domains which are separated by a periodic interface. The unfolding method is then applied to an elliptic problem with a jump of the solution on the interface, which is proportional to the flux and depends on a real parameter. We prove some homogenization and corrector results, which recover and complete those previously obtained by the first author and S. Monsurr`o. Bibliography: 32 titles. Illustrations: 2 figures.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10958-011-0443-2</doi><tpages>37</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-3374 |
ispartof | Journal of mathematical sciences (New York, N.Y.), 2011-08, Vol.176 (6), p.891-927 |
issn | 1072-3374 1573-8795 |
language | eng |
recordid | cdi_gale_infotracmisc_A377290171 |
source | SpringerLink Journals - AutoHoldings |
subjects | Mathematics Mathematics and Statistics |
title | The periodic unfolding method for a class of imperfect transmission problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A47%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20periodic%20unfolding%20method%20for%20a%20class%20of%20imperfect%20transmission%20problems&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Donato,%20P.&rft.date=2011-08-03&rft.volume=176&rft.issue=6&rft.spage=891&rft.epage=927&rft.pages=891-927&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-011-0443-2&rft_dat=%3Cgale_cross%3EA377290171%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A377290171&rfr_iscdi=true |