The periodic unfolding method for a class of imperfect transmission problems

The periodic unfolding method was introduced by D. Cioranescu, A. Damlamian and G. Griso for studying the classical periodic homogenization in fixed domains and more recently extended to periodically perforated domains by D. Cioranescu, A. Damlamian, P. Donato, G. Griso, and R. Zaki. Here, the metho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2011-08, Vol.176 (6), p.891-927
Hauptverfasser: Donato, P., Le Nguyen, K. H., Tardieu, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 927
container_issue 6
container_start_page 891
container_title Journal of mathematical sciences (New York, N.Y.)
container_volume 176
creator Donato, P.
Le Nguyen, K. H.
Tardieu, R.
description The periodic unfolding method was introduced by D. Cioranescu, A. Damlamian and G. Griso for studying the classical periodic homogenization in fixed domains and more recently extended to periodically perforated domains by D. Cioranescu, A. Damlamian, P. Donato, G. Griso, and R. Zaki. Here, the method is adapted to two-component domains which are separated by a periodic interface. The unfolding method is then applied to an elliptic problem with a jump of the solution on the interface, which is proportional to the flux and depends on a real parameter. We prove some homogenization and corrector results, which recover and complete those previously obtained by the first author and S. Monsurr`o. Bibliography: 32 titles. Illustrations: 2 figures.
doi_str_mv 10.1007/s10958-011-0443-2
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracmisc_A377290171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A377290171</galeid><sourcerecordid>A377290171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3852-823638fdbad712292229fe5fdb17af9ec11d9a5d1c97492775c3ac6c227712e83</originalsourceid><addsrcrecordid>eNp9kU1LAzEQhhdRsFZ_gLeAJw-p-dhtdo-l-FEoCFrPIc1Otim7m5JsQf-9U-qlUCSEDMPzDEPeLLvnbMIZU0-Js6ooKeOcsjyXVFxkI14oSUtVFZdYMyWolCq_zm5S2jJ0pqUcZcvVBsgOog-1t2Tfu9DWvm9IB8Mm1MSFSAyxrUmJBEd8h6gDO5Ahmj51PiUferKLYd1Cl26zK2faBHd_7zj7enlezd_o8v11MZ8tqZVlIWgp5FSWrl6bWnEhKoHXQYENroyrwHJeV6aoua1UXgmlCiuNnVqBJRdQynH2cJzbmBa0x6VxHYvbWD2TSomKccWRomeoBnqIpg09OI_tE35yhsdTQ-ftWeHxREBmgO-hMfuU9OLz45TlR9bGkFIEp3fRdyb-aM70IUF9TFBjgvqQoBboiKOTkO0biHob9rHHn_1H-gWu-5uI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The periodic unfolding method for a class of imperfect transmission problems</title><source>SpringerLink Journals - AutoHoldings</source><creator>Donato, P. ; Le Nguyen, K. H. ; Tardieu, R.</creator><creatorcontrib>Donato, P. ; Le Nguyen, K. H. ; Tardieu, R.</creatorcontrib><description>The periodic unfolding method was introduced by D. Cioranescu, A. Damlamian and G. Griso for studying the classical periodic homogenization in fixed domains and more recently extended to periodically perforated domains by D. Cioranescu, A. Damlamian, P. Donato, G. Griso, and R. Zaki. Here, the method is adapted to two-component domains which are separated by a periodic interface. The unfolding method is then applied to an elliptic problem with a jump of the solution on the interface, which is proportional to the flux and depends on a real parameter. We prove some homogenization and corrector results, which recover and complete those previously obtained by the first author and S. Monsurr`o. Bibliography: 32 titles. Illustrations: 2 figures.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-011-0443-2</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Mathematics ; Mathematics and Statistics</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2011-08, Vol.176 (6), p.891-927</ispartof><rights>Springer Science+Business Media, Inc. 2011</rights><rights>COPYRIGHT 2011 Springer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3852-823638fdbad712292229fe5fdb17af9ec11d9a5d1c97492775c3ac6c227712e83</citedby><cites>FETCH-LOGICAL-c3852-823638fdbad712292229fe5fdb17af9ec11d9a5d1c97492775c3ac6c227712e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-011-0443-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-011-0443-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Donato, P.</creatorcontrib><creatorcontrib>Le Nguyen, K. H.</creatorcontrib><creatorcontrib>Tardieu, R.</creatorcontrib><title>The periodic unfolding method for a class of imperfect transmission problems</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>The periodic unfolding method was introduced by D. Cioranescu, A. Damlamian and G. Griso for studying the classical periodic homogenization in fixed domains and more recently extended to periodically perforated domains by D. Cioranescu, A. Damlamian, P. Donato, G. Griso, and R. Zaki. Here, the method is adapted to two-component domains which are separated by a periodic interface. The unfolding method is then applied to an elliptic problem with a jump of the solution on the interface, which is proportional to the flux and depends on a real parameter. We prove some homogenization and corrector results, which recover and complete those previously obtained by the first author and S. Monsurr`o. Bibliography: 32 titles. Illustrations: 2 figures.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kU1LAzEQhhdRsFZ_gLeAJw-p-dhtdo-l-FEoCFrPIc1Otim7m5JsQf-9U-qlUCSEDMPzDEPeLLvnbMIZU0-Js6ooKeOcsjyXVFxkI14oSUtVFZdYMyWolCq_zm5S2jJ0pqUcZcvVBsgOog-1t2Tfu9DWvm9IB8Mm1MSFSAyxrUmJBEd8h6gDO5Ahmj51PiUferKLYd1Cl26zK2faBHd_7zj7enlezd_o8v11MZ8tqZVlIWgp5FSWrl6bWnEhKoHXQYENroyrwHJeV6aoua1UXgmlCiuNnVqBJRdQynH2cJzbmBa0x6VxHYvbWD2TSomKccWRomeoBnqIpg09OI_tE35yhsdTQ-ftWeHxREBmgO-hMfuU9OLz45TlR9bGkFIEp3fRdyb-aM70IUF9TFBjgvqQoBboiKOTkO0biHob9rHHn_1H-gWu-5uI</recordid><startdate>20110803</startdate><enddate>20110803</enddate><creator>Donato, P.</creator><creator>Le Nguyen, K. H.</creator><creator>Tardieu, R.</creator><general>Springer US</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20110803</creationdate><title>The periodic unfolding method for a class of imperfect transmission problems</title><author>Donato, P. ; Le Nguyen, K. H. ; Tardieu, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3852-823638fdbad712292229fe5fdb17af9ec11d9a5d1c97492775c3ac6c227712e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Donato, P.</creatorcontrib><creatorcontrib>Le Nguyen, K. H.</creatorcontrib><creatorcontrib>Tardieu, R.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Donato, P.</au><au>Le Nguyen, K. H.</au><au>Tardieu, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The periodic unfolding method for a class of imperfect transmission problems</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2011-08-03</date><risdate>2011</risdate><volume>176</volume><issue>6</issue><spage>891</spage><epage>927</epage><pages>891-927</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>The periodic unfolding method was introduced by D. Cioranescu, A. Damlamian and G. Griso for studying the classical periodic homogenization in fixed domains and more recently extended to periodically perforated domains by D. Cioranescu, A. Damlamian, P. Donato, G. Griso, and R. Zaki. Here, the method is adapted to two-component domains which are separated by a periodic interface. The unfolding method is then applied to an elliptic problem with a jump of the solution on the interface, which is proportional to the flux and depends on a real parameter. We prove some homogenization and corrector results, which recover and complete those previously obtained by the first author and S. Monsurr`o. Bibliography: 32 titles. Illustrations: 2 figures.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10958-011-0443-2</doi><tpages>37</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1072-3374
ispartof Journal of mathematical sciences (New York, N.Y.), 2011-08, Vol.176 (6), p.891-927
issn 1072-3374
1573-8795
language eng
recordid cdi_gale_infotracmisc_A377290171
source SpringerLink Journals - AutoHoldings
subjects Mathematics
Mathematics and Statistics
title The periodic unfolding method for a class of imperfect transmission problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A47%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20periodic%20unfolding%20method%20for%20a%20class%20of%20imperfect%20transmission%20problems&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Donato,%20P.&rft.date=2011-08-03&rft.volume=176&rft.issue=6&rft.spage=891&rft.epage=927&rft.pages=891-927&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-011-0443-2&rft_dat=%3Cgale_cross%3EA377290171%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A377290171&rfr_iscdi=true