Prediction of bioactive compound activity against wood contaminant fungi using artificial neural networks

Biopesticides based on natural endophytic bacteria to control plant diseases are an ecological alternative to chemical treatments. Bacillus species produce a wide variety of metabolites with biological activity like iturinic lipopeptides. This work addresses the production of biopesticides based on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian journal of forest research 2013-11, Vol.43 (11), p.985-992
Hauptverfasser: Vicente, Henrique, José C. Roseiro, José M. Arteiro, José Neves, A. Teresa Caldeira
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 992
container_issue 11
container_start_page 985
container_title Canadian journal of forest research
container_volume 43
creator Vicente, Henrique
José C. Roseiro
José M. Arteiro
José Neves
A. Teresa Caldeira
description Biopesticides based on natural endophytic bacteria to control plant diseases are an ecological alternative to chemical treatments. Bacillus species produce a wide variety of metabolites with biological activity like iturinic lipopeptides. This work addresses the production of biopesticides based on natural endophytic bacteria isolated from Quercus suber L. Artificial neural networks were used to maximize the percentage of inhibition triggered by the antifungal activity of bioactive compounds produced by Bacillus amyloliquefaciens. The active compounds, produced in liquid cultures, inhibited the growth of 15 fungi and exhibited a broader spectrum of antifungal activity against surface contaminant fungi, blue stain fungi, and phytopathogenic fungi. A 19-7-6-1 neural network was selected to predict the percentage of inhibition produced by antifungal bioactive compounds. A good match among the observed and predicted values was obtained with the R² values varying between 0.9965–0.9971 and 0.9974–0.9989 for training and test sets. The 19-7-6-1 neural network was used to establish the dilution rates that maximize the production of antifungal bioactive compounds, namely, 0.25 h⁻¹ for surface contaminant fungi, 0.45 h⁻¹ for blue stain fungi, and between 0.30 and 0.40 h⁻¹ for phytopathogenic fungi. Artificial neural networks show great potential in the modelling and optimization of these bioprocesses.
doi_str_mv 10.1139/cjfr-2013-0142
format Article
fullrecord <record><control><sourceid>gale_nrcre</sourceid><recordid>TN_cdi_gale_infotracmisc_A354249476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A354249476</galeid><sourcerecordid>A354249476</sourcerecordid><originalsourceid>FETCH-LOGICAL-c636t-b666e406201adf86e39a7be5db90df17d00328abaf8c1e1d31cf99ac9c8d02b3</originalsourceid><addsrcrecordid>eNqVkk1v1DAQhiMEEqVw5YoFQiqHFDtOnPhYVRQqVYBoOVsTfwQvib21HUr_PU53BV20EkI-jMfzzKvxzBTFc4KPCaH8rVyZUFaY0BKTunpQHJAKdyXDtH147_64eBLjCmNMGcUHhf0ctLIyWe-QN6i3HrLzQyPpp7WfnUJ3vk23CAawLiZ0473KYZdgsg5cQmZ2g0VztG5AEJI1VloYkdNzuDPpxofv8WnxyMAY9bOtPSyuzt5dnX4oLz69Pz89uSgloyyVPWNM15jlj4AyHdOUQ9vrRvUcK0NalSuvOujBdJJooiiRhnOQXHYKVz09LI42suvgr2cdk5hslHocwWk_R0FqVje4IazN6Ku_0JWfg8vFZarpWk6apvlDDTBqYZ3xKYBcRMUJbeqq5nXLMlXuoQbtdO6Bd9rY_LzDv9zDy7W9Fveh4z1QPkpPVu5VfbOTsExJ_0wDzDGK88sv_8F-3GW3hcjgYwzaiHWwE4RbQbBYlk8syyeW5RPL8uWE19vWQpQwmgBO2vg7q-oIxW27jIBsOBdk0FFDkN_-rf1ik2PACxhC1v16mcMMY8I5bwn9BX778K8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1458791555</pqid></control><display><type>article</type><title>Prediction of bioactive compound activity against wood contaminant fungi using artificial neural networks</title><source>Alma/SFX Local Collection</source><creator>Vicente, Henrique ; José C. Roseiro ; José M. Arteiro ; José Neves ; A. Teresa Caldeira</creator><creatorcontrib>Vicente, Henrique ; José C. Roseiro ; José M. Arteiro ; José Neves ; A. Teresa Caldeira</creatorcontrib><description>Biopesticides based on natural endophytic bacteria to control plant diseases are an ecological alternative to chemical treatments. Bacillus species produce a wide variety of metabolites with biological activity like iturinic lipopeptides. This work addresses the production of biopesticides based on natural endophytic bacteria isolated from Quercus suber L. Artificial neural networks were used to maximize the percentage of inhibition triggered by the antifungal activity of bioactive compounds produced by Bacillus amyloliquefaciens. The active compounds, produced in liquid cultures, inhibited the growth of 15 fungi and exhibited a broader spectrum of antifungal activity against surface contaminant fungi, blue stain fungi, and phytopathogenic fungi. A 19-7-6-1 neural network was selected to predict the percentage of inhibition produced by antifungal bioactive compounds. A good match among the observed and predicted values was obtained with the R² values varying between 0.9965–0.9971 and 0.9974–0.9989 for training and test sets. The 19-7-6-1 neural network was used to establish the dilution rates that maximize the production of antifungal bioactive compounds, namely, 0.25 h⁻¹ for surface contaminant fungi, 0.45 h⁻¹ for blue stain fungi, and between 0.30 and 0.40 h⁻¹ for phytopathogenic fungi. Artificial neural networks show great potential in the modelling and optimization of these bioprocesses.</description><identifier>ISSN: 1208-6037</identifier><identifier>ISSN: 0045-5067</identifier><identifier>EISSN: 1208-6037</identifier><identifier>DOI: 10.1139/cjfr-2013-0142</identifier><identifier>CODEN: CJFRAR</identifier><language>eng</language><publisher>Ottawa, ON: NRC Research Press</publisher><subject>active ingredients ; antifungal properties ; Bacillus ; Bacillus (Bacteria) ; Bacillus amyloliquefaciens ; Bacteria ; Bioactive compounds ; Biological and medical sciences ; Biopesticides ; blue-stain fungi ; Chemical compounds ; Chemical properties ; Chemical treatment ; Contaminants ; decay fungi ; endophytes ; Environmental aspects ; Forestry ; Fundamental and applied biological sciences. Psychology ; Fungi ; growth retardation ; lipopeptides ; Metabolites ; Microbiological chemistry ; Neural networks ; Optimization ; Pesticides ; Physiological aspects ; Plant diseases ; plant diseases and disorders ; plant pathogenic fungi ; prediction ; Production processes ; Quercus suber ; Wood</subject><ispartof>Canadian journal of forest research, 2013-11, Vol.43 (11), p.985-992</ispartof><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2013 NRC Research Press</rights><rights>Copyright Canadian Science Publishing NRC Research Press Nov 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c636t-b666e406201adf86e39a7be5db90df17d00328abaf8c1e1d31cf99ac9c8d02b3</citedby><cites>FETCH-LOGICAL-c636t-b666e406201adf86e39a7be5db90df17d00328abaf8c1e1d31cf99ac9c8d02b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28130777$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Vicente, Henrique</creatorcontrib><creatorcontrib>José C. Roseiro</creatorcontrib><creatorcontrib>José M. Arteiro</creatorcontrib><creatorcontrib>José Neves</creatorcontrib><creatorcontrib>A. Teresa Caldeira</creatorcontrib><title>Prediction of bioactive compound activity against wood contaminant fungi using artificial neural networks</title><title>Canadian journal of forest research</title><description>Biopesticides based on natural endophytic bacteria to control plant diseases are an ecological alternative to chemical treatments. Bacillus species produce a wide variety of metabolites with biological activity like iturinic lipopeptides. This work addresses the production of biopesticides based on natural endophytic bacteria isolated from Quercus suber L. Artificial neural networks were used to maximize the percentage of inhibition triggered by the antifungal activity of bioactive compounds produced by Bacillus amyloliquefaciens. The active compounds, produced in liquid cultures, inhibited the growth of 15 fungi and exhibited a broader spectrum of antifungal activity against surface contaminant fungi, blue stain fungi, and phytopathogenic fungi. A 19-7-6-1 neural network was selected to predict the percentage of inhibition produced by antifungal bioactive compounds. A good match among the observed and predicted values was obtained with the R² values varying between 0.9965–0.9971 and 0.9974–0.9989 for training and test sets. The 19-7-6-1 neural network was used to establish the dilution rates that maximize the production of antifungal bioactive compounds, namely, 0.25 h⁻¹ for surface contaminant fungi, 0.45 h⁻¹ for blue stain fungi, and between 0.30 and 0.40 h⁻¹ for phytopathogenic fungi. Artificial neural networks show great potential in the modelling and optimization of these bioprocesses.</description><subject>active ingredients</subject><subject>antifungal properties</subject><subject>Bacillus</subject><subject>Bacillus (Bacteria)</subject><subject>Bacillus amyloliquefaciens</subject><subject>Bacteria</subject><subject>Bioactive compounds</subject><subject>Biological and medical sciences</subject><subject>Biopesticides</subject><subject>blue-stain fungi</subject><subject>Chemical compounds</subject><subject>Chemical properties</subject><subject>Chemical treatment</subject><subject>Contaminants</subject><subject>decay fungi</subject><subject>endophytes</subject><subject>Environmental aspects</subject><subject>Forestry</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fungi</subject><subject>growth retardation</subject><subject>lipopeptides</subject><subject>Metabolites</subject><subject>Microbiological chemistry</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Pesticides</subject><subject>Physiological aspects</subject><subject>Plant diseases</subject><subject>plant diseases and disorders</subject><subject>plant pathogenic fungi</subject><subject>prediction</subject><subject>Production processes</subject><subject>Quercus suber</subject><subject>Wood</subject><issn>1208-6037</issn><issn>0045-5067</issn><issn>1208-6037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqVkk1v1DAQhiMEEqVw5YoFQiqHFDtOnPhYVRQqVYBoOVsTfwQvib21HUr_PU53BV20EkI-jMfzzKvxzBTFc4KPCaH8rVyZUFaY0BKTunpQHJAKdyXDtH147_64eBLjCmNMGcUHhf0ctLIyWe-QN6i3HrLzQyPpp7WfnUJ3vk23CAawLiZ0473KYZdgsg5cQmZ2g0VztG5AEJI1VloYkdNzuDPpxofv8WnxyMAY9bOtPSyuzt5dnX4oLz69Pz89uSgloyyVPWNM15jlj4AyHdOUQ9vrRvUcK0NalSuvOujBdJJooiiRhnOQXHYKVz09LI42suvgr2cdk5hslHocwWk_R0FqVje4IazN6Ku_0JWfg8vFZarpWk6apvlDDTBqYZ3xKYBcRMUJbeqq5nXLMlXuoQbtdO6Bd9rY_LzDv9zDy7W9Fveh4z1QPkpPVu5VfbOTsExJ_0wDzDGK88sv_8F-3GW3hcjgYwzaiHWwE4RbQbBYlk8syyeW5RPL8uWE19vWQpQwmgBO2vg7q-oIxW27jIBsOBdk0FFDkN_-rf1ik2PACxhC1v16mcMMY8I5bwn9BX778K8</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Vicente, Henrique</creator><creator>José C. Roseiro</creator><creator>José M. Arteiro</creator><creator>José Neves</creator><creator>A. Teresa Caldeira</creator><general>NRC Research Press</general><general>National Research Council of Canada</general><general>Canadian Science Publishing NRC Research Press</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>U9A</scope><scope>M7N</scope></search><sort><creationdate>20131101</creationdate><title>Prediction of bioactive compound activity against wood contaminant fungi using artificial neural networks</title><author>Vicente, Henrique ; José C. Roseiro ; José M. Arteiro ; José Neves ; A. Teresa Caldeira</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c636t-b666e406201adf86e39a7be5db90df17d00328abaf8c1e1d31cf99ac9c8d02b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>active ingredients</topic><topic>antifungal properties</topic><topic>Bacillus</topic><topic>Bacillus (Bacteria)</topic><topic>Bacillus amyloliquefaciens</topic><topic>Bacteria</topic><topic>Bioactive compounds</topic><topic>Biological and medical sciences</topic><topic>Biopesticides</topic><topic>blue-stain fungi</topic><topic>Chemical compounds</topic><topic>Chemical properties</topic><topic>Chemical treatment</topic><topic>Contaminants</topic><topic>decay fungi</topic><topic>endophytes</topic><topic>Environmental aspects</topic><topic>Forestry</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fungi</topic><topic>growth retardation</topic><topic>lipopeptides</topic><topic>Metabolites</topic><topic>Microbiological chemistry</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Pesticides</topic><topic>Physiological aspects</topic><topic>Plant diseases</topic><topic>plant diseases and disorders</topic><topic>plant pathogenic fungi</topic><topic>prediction</topic><topic>Production processes</topic><topic>Quercus suber</topic><topic>Wood</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vicente, Henrique</creatorcontrib><creatorcontrib>José C. Roseiro</creatorcontrib><creatorcontrib>José M. Arteiro</creatorcontrib><creatorcontrib>José Neves</creatorcontrib><creatorcontrib>A. Teresa Caldeira</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><jtitle>Canadian journal of forest research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vicente, Henrique</au><au>José C. Roseiro</au><au>José M. Arteiro</au><au>José Neves</au><au>A. Teresa Caldeira</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of bioactive compound activity against wood contaminant fungi using artificial neural networks</atitle><jtitle>Canadian journal of forest research</jtitle><date>2013-11-01</date><risdate>2013</risdate><volume>43</volume><issue>11</issue><spage>985</spage><epage>992</epage><pages>985-992</pages><issn>1208-6037</issn><issn>0045-5067</issn><eissn>1208-6037</eissn><coden>CJFRAR</coden><abstract>Biopesticides based on natural endophytic bacteria to control plant diseases are an ecological alternative to chemical treatments. Bacillus species produce a wide variety of metabolites with biological activity like iturinic lipopeptides. This work addresses the production of biopesticides based on natural endophytic bacteria isolated from Quercus suber L. Artificial neural networks were used to maximize the percentage of inhibition triggered by the antifungal activity of bioactive compounds produced by Bacillus amyloliquefaciens. The active compounds, produced in liquid cultures, inhibited the growth of 15 fungi and exhibited a broader spectrum of antifungal activity against surface contaminant fungi, blue stain fungi, and phytopathogenic fungi. A 19-7-6-1 neural network was selected to predict the percentage of inhibition produced by antifungal bioactive compounds. A good match among the observed and predicted values was obtained with the R² values varying between 0.9965–0.9971 and 0.9974–0.9989 for training and test sets. The 19-7-6-1 neural network was used to establish the dilution rates that maximize the production of antifungal bioactive compounds, namely, 0.25 h⁻¹ for surface contaminant fungi, 0.45 h⁻¹ for blue stain fungi, and between 0.30 and 0.40 h⁻¹ for phytopathogenic fungi. Artificial neural networks show great potential in the modelling and optimization of these bioprocesses.</abstract><cop>Ottawa, ON</cop><pub>NRC Research Press</pub><doi>10.1139/cjfr-2013-0142</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1208-6037
ispartof Canadian journal of forest research, 2013-11, Vol.43 (11), p.985-992
issn 1208-6037
0045-5067
1208-6037
language eng
recordid cdi_gale_infotracmisc_A354249476
source Alma/SFX Local Collection
subjects active ingredients
antifungal properties
Bacillus
Bacillus (Bacteria)
Bacillus amyloliquefaciens
Bacteria
Bioactive compounds
Biological and medical sciences
Biopesticides
blue-stain fungi
Chemical compounds
Chemical properties
Chemical treatment
Contaminants
decay fungi
endophytes
Environmental aspects
Forestry
Fundamental and applied biological sciences. Psychology
Fungi
growth retardation
lipopeptides
Metabolites
Microbiological chemistry
Neural networks
Optimization
Pesticides
Physiological aspects
Plant diseases
plant diseases and disorders
plant pathogenic fungi
prediction
Production processes
Quercus suber
Wood
title Prediction of bioactive compound activity against wood contaminant fungi using artificial neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A58%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_nrcre&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20bioactive%20compound%20activity%20against%20wood%20contaminant%20fungi%20using%20artificial%20neural%20networks&rft.jtitle=Canadian%20journal%20of%20forest%20research&rft.au=Vicente,%20Henrique&rft.date=2013-11-01&rft.volume=43&rft.issue=11&rft.spage=985&rft.epage=992&rft.pages=985-992&rft.issn=1208-6037&rft.eissn=1208-6037&rft.coden=CJFRAR&rft_id=info:doi/10.1139/cjfr-2013-0142&rft_dat=%3Cgale_nrcre%3EA354249476%3C/gale_nrcre%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1458791555&rft_id=info:pmid/&rft_galeid=A354249476&rfr_iscdi=true